

Multipro \ Dualpro

PROGRAMMING & BASIC
LANGUAGE HANDBOOK

COPYRIGHT © 1998
MARATHON MONITORS INC.

Marathon Monitors Inc.

Page 0
MultiPro/Dualpro Programming Handbook

This manual has part number F200043

Copyright ©1998 Marathon Monitors Inc.

No part of this document may be stored or reproduced by any means whatsoever
without prior written permission from Marathon Monitors Inc.

Dualpro and Carbpro are trademarked to Marathon Monitors all other trademarks are
duly noted and are the sole the properties of their owners. No attempt at trademark or
copyright infringement is intended or implied.

The Dualpro is a two-channel process controller that is meant to be used by the
industrial operator at his or her own risk. Marathon makes no warranties express or
implied beyond the written warranty presented at initial purchase. Marathon is not
responsible for any product, process damage, or injury resulting from the use of this
product and makes no warranties with respect to the contents hereof and specifically
disclaims any warranties of merchantability or fitness for any particular application or
purpose.

Revision Date 11 01 97(First Release) Revision number 0
Revision 1 Date 05 19 98(Add Recipe editing) Revision number 1.0
Revision 2 Date 07 05 06
Revision 3 Date 25 July 08 (added page numbers and update address)

For assistance please contact:

 Marathon Monitors Inc.

 TEL: +1 513 772 1000 • FAX: +1 513 326 7090

 Toll-Free North America +1-800-547-1055

 erika.leeds@group-upc.com

Marathon Monitors Inc.

Page 1
MultiPro/Dualpro Programming Handbook

TABLE OF CONTENTS:
Multipro Programming: ... 2
Recipe Programming ... 4
Recipe Language operations codes:... 8
Operator Selections.. 12

Special Considerations .. 13
Technical Information... 14
PROGRAMMER ALARMS ... 17
DELETING A STEP: .. 26
EXITING THE EDITOR WITHOUT SAVING THE PROGRAM: 26
EXITING THE EDITOR WITH PROGRAM SAVED:.. 26
Displays and other Editing Notes .. 26
Editing a Program.. 26
PROGRAMMING ANALOG INPUTS .. 28
PROGRAMMING ANALOG OUTPUTS . .. 29
MULTIPRO DATABASE... 30
Version 4 programmer ... 31
Error Codes.. 34
BASIC ... 35
Logic Language Programmer .. 38
BASIC Interpreter.. 65
BASIC ERROR TABLE ... 122

Index .. 124

Marathon Monitors Inc.

Page 2
MultiPro/Dualpro Programming Handbook

 Multipro Programming:

The Multipro employs a Dual Programmer. A custom background program will normally
always run in the background. This custom background program is written based on the system
design and handles the following functions:

 a. Data logging
 b. Alarm handling
 c. Communications with various equipment
 d. Deviation alarms
 e. Probe maintenance
 f. Auto cal functions (if any)
 g. Event handling
 h. Recipe management

The background program is written in MSI Logic language. The Logic language is powerful
and flexible and allows the MSI Multipro to accomplish a wide variety of operations and
interface to a wide range of equipment. However, the complexity of the Logic language limits
its usefulness as a "recipe input" language.

Marathon Monitors Inc.

Page 3
MultiPro/Dualpro Programming Handbook

Many MSI customers are familiar with recipe entry using the MSI Recipe language. Previously,
this recipe language was available only on MSI v3 and 3.5 (including MultiCarb) instruments.
The recipe language provides a simple method for entering recipes.

The Multipro provides the capability of using either Logic language or Recipe programs in the
foreground. Using a custom Logic language program in the background and recipes in the
foreground provides the full flexibility and complexity of a Multipro. This maintains the ease
of recipe entry associated with the v3 and 3.5 MSI instruments.

Marathon Monitors Inc.

Page 4
MultiPro/Dualpro Programming Handbook

Recipe Programming
The Recipe language uses a STEP/OPCODE approach to recipe design. The STEP approach is
very similar to what an operator would do if he were manually controlling the process.

The following are the OPCODEs used in the recipe language. Theses will be followed by
sample recipes, which can be run to test various functions of the Multipro.
Recipe Language operations codes:

OPCODE

MNEMONIC

DATA
RANGE

DESCRIPTION

 NOP

 NOP

No operation

 A

 ALARM

1 to 79

Sound and display an
alarm to summon and
inform the operator of a
message. XXXX is the
programmed message
number.

 B

BRANCH

0 to
19.19

 Instructs a program
where to go. After an
inquiry: XX.XX = TT.FF.
 0000 branches out of the
program.(TT= inquire
True,
FF= inquiry False)

 C

CARB SETP

-100 to
2030

Changes the carbon
setpoint to the value
XXXX. See notes

 c

CARB TEST

-100 to

Check if Dewpoint or %C

Marathon Monitors Inc.

Page 5
MultiPro/Dualpro Programming Handbook

OPCODE

MNEMONIC

DATA
RANGE

DESCRIPTION

2000 is above the specified
value. see notes.

 d

ADD REFN

-128 to
127

add to the reference
number.

 E

EVENT

000.0 to
063.0

000.1 to
063.1

Turns an output ON or
OFF or waits for an input
condition. The
Programmer Waits for an
acknowledgment that the
change has occurred before
advancing to the next step.

The farthest right DATA
character indicates ON (.1)
or OFF (.0) state.

The first three DATA
characters indicate which
INPUT or OUTPUT is
affected.

Marathon Monitors Inc.

Page 6
MultiPro/Dualpro Programming Handbook

OPCODE

MNEMONIC

DATA
RANGE

DESCRIPTION

 F

FLAG

000.0 to
047.0

000.1 to
047.1

Turns a Flag ON or OFF.
Flags are used to convey
information to the
background program. The
Programmer does not wait
after setting a flag (the
LIMIT OPCODE has no
effect.

The farthest right DATA
character indicates ON (.1)
or OFF (.0) state.
The first three DATA
characters indicate which
FLAG is affected. The
Background program
would access these flags as
bits 4 through 15 of 00 for
Flags 0 - 11 respectively.

Marathon Monitors Inc.

Page 7
MultiPro/Dualpro Programming Handbook

OPCODE

MNEMONIC

DATA
RANGE

DESCRIPTION

 G

GOSUB

0000 to
0201

Allows one program to
execute another program
and then continue. Any
program can be called as a
subroutine as long as it
does not call a subroutine.
When a subroutine ends,
the calling program is
reloaded and restarted at
the step following the G
OPCODE. See notes
A GOSUB 201 will cause
a program to be called
whose number is equal to
the REFERENCE
NUMBER.

H

TEMP SETP

0000 to
4000

Changes the temperature
controller SETPOINT.
NOTE 2

Marathon Monitors Inc.

Page 8
MultiPro/Dualpro Programming Handbook

Recipe Language operations codes:

OPCODE

MNEMONIC

DATA

RANGE

DESCRIPTION

 h

TEMP
TEST

0 to
4000

Check to see if the
temperature is above the
specified value.

 I

DELAY

2 to 250

Insert a delay in real-time
seconds.

 J

JUMP

0 to 201

Jump to another program
and continue executing
the new program. The
programmer never
returns to the program
with a J OPCODE unless
called by a G OPCODE.
A JUMP 0000 will reload
and execute the currently
running program.
A JUMP 201 will cause a
jump to The program
whose number is equal to
the reference number.

Marathon Monitors Inc.

Page 9
MultiPro/Dualpro Programming Handbook

OPCODE

MNEMONIC

DATA

RANGE

DESCRIPTION

 L

LIMIT

5 to
4000

Limit the amount of time
a programmer should
wait for something to
happen before sounding
an alarm. The L
OPCODE only works
when used with another
OPCODE. The data in a
LIMIT statement may be
used to indicate
temperature. see notes.

 m

IN A TEST

0 to
4000

Check the temperature
from input A.

 n

SET REFN

0 to 255

Set a new reference
number.

 o

IN B TEST

0 to
4000

Check the O2 mV from
input B.

 P

SET PROF

0 to 999

Allow the Process Factor
to be altered by the
programmer. See note 3.

 q

REFN TEST

0 to
4000

Check to see if the
reference number is
above the specified value.

Marathon Monitors Inc.

Page 10
MultiPro/Dualpro Programming Handbook

Recipe Language operations codes:

OPCODE

MNEMONIC

DATA
RANGE

DESCRIPTION

 r

 RAMP

5 to 4000

Specifies the RAMP time from
current temperature SETPOINT
to the new SETPOINT. Must be
followed by an H OPCODE.
xx.xx is the RAMP time in hours
and minutes.

 S

SOAK

5 to 4000

Hold at heat for a specified time.
Data entered is the soak time in
hours and minutes.

 T

MTMR SET

0 to 4000

set the master timer see note 4.

 t

MTMR TEST

0 to 4000

check the master timer see note
4

 U

TEMP OUT

- 099 to
099

check the temperature control %
output.

 u

% C IN

- 099 to
099

Check the Carbon control %
output.

 W

WAIT

0 to 471

wait for a flag

 Y

IN C TEST

0 to 4000

check input C

 Z

Z OPCODE

0 to 4000

unconditionally set loop 2
setpoint. Also used in
conjunction with flag 11 to pass
information to the background
program. see notes.

NOTES:

Marathon Monitors Inc.

Page 11
MultiPro/Dualpro Programming Handbook

1. The control loop on which the C and c OPCODES act is based on the instrument setup.
a. If the control variable for Loop 1 is either CV0, CV1, or IN B, then these

OPCODEs act on Loop 1.
b. If Loop 1 is not CV0, CV1, or IN B but Loop 2 control variable is either CV0,

CV1, or IN B, then these OPCODEs act on Loop 2.
c. If neither loop is set for CV0, CV1, or IN B, these OPCODEs will act on Loop

1 (default).

2. The control loop on which the H and h OPCODEs act is based on the instrument setup (See
Setup and Configuration: Parameters).

a. If the control variable for Loop 1 is set for either IN A or IN C, these
OPCODEs will act on Loop 1.

b. If Loop 1 is not set for IN A or IN C, and Loop 2 is set for IN C, these
OPCODEs will act on Loop 2.

c. If Loop 1 is not set for IN A or IN C and Loop 2 is not set for IN C, then these
OPCODEs will act on the Slave #1 Temperature controller.

3. The process factor that is affected is determined by the instrument setup (See Setup and
Configuration: control variables) .

a. If the controlled variable is CV0 (%Carbon) then PF 1 will be changed.
b. If the controlled variable is CV1 (Dewpoint), then PF 2 will be changed.

4. The Programmer counts time in hours AND minutes. Time is entered and displayed as
HH.MM where HH=hours and MM=minutes. The programmer uses timer F (TmrF) for
counting the time.

5. The set flag opcode, F, works exactly like an event output opcode. There are twelve flags,
numbered 0 to 11, which can be set or cleared as indicators to the background program. One
flag, #11, also effects the operation of the Z opcode described later. The flags are set or cleared
immediately and the limit opcode has no effect. The flags are physically stored in parameter O0
in bits 4 through 15 for flags 0 to 11 respectively. These are the unused bits of the internal
events setpoint.

The wait flag opcode, W, works exactly like an event input opcode. There are twelve flags,
numbered 0 to 11, on which the wait can be specified for the flag to be set or cleared. If the
selected flag is in the specified state the program continues. If the flag in not in the specified
state the programs waits for the flag to be changed by the background program. A limit
statement can be used specify the maximum wait time before a limit alarm will occur. The flags
are physically stored in parameter o0 in bits 4 through 15 for flags 0 to 11 respectively. These
are the unused bits of the internal events actual values.

The set loop 2 opcode, Z, is used to specify the setpoint for loop 2. A special case arises if flag
#11 is set by the F opcode. If flag #11 is set, then the Z opcode will set the Z1 accumulator
instead of the loop 2 setpoint. This feature was added so that the Z1 could be set to values larger
than 255. When flag #11 is set, the limit statement will have no effect following the Z opcode.

Marathon Monitors Inc.

Page 12
MultiPro/Dualpro Programming Handbook

Otherwise, the limit statement will cause the program to wait for the loop 2 controlled variable to
come within +/- 5 of the setpoint. Use the following sequence for these commands:

 F 11.1 (turn on flag 11)
 Z 600 (set ref num to 600)

If we want to ensure the background got it, add:

 W 11.1 (wait for B Prog to acknowledge)
 L 00.05 (but wait no more than 5 min)
 F 11.0 (clear flag 11)

Special flags are also available to perform internal functions in the Dualpro when commanded
to do so in a recipe. Setting flags 12, 13, 14, 15 are the same as setting internal events 0
through 4. Setting flag 16

“H” OPCODE REDIRECTION

The following OPCODES are effected by the redirection capability added to the version 3.5
programmer in the Multipro.
The 'H' OPCODE is used to set the setpoint of the temperature loop in a Version 3.5 recipe
program. The 'h' OPCODE is used to perform an inquiry on the actual temperature of that same
control loop.
a. The 'r' OPCODE ramps the temperature loop overtime.
b. The 'U' OPCODE is used to perform an inquiry on the temperature controllers percent

output.
The following order of selection applied to the 'H' (and the 'h' 'r' & 'U') previously;

1. Loop 1 if it's controlled variable is Input A or Input C.
2. Loop 2 if it's controlled variable is Input C.
3. Slave temperature controller #1.

The redirection capability allows the operator to select whether the normal logic is used or the
OPCODEs are directed to a specific instrument. The operator can then select to which channel
and which temperature slave of that channel. Therefore, the 'H' OPCODE can be directed to a
slave temperature controller even if loop 1 or 2 would have satisfied the above logic. Also, the
'H' OPCODE can be directed to the temperature slave of a slave Multipro.

Operator Selections

The operator has three selections to make in relation to the redirection of the 'H'
OPCODE. These items are located in the 'Prog' menu under the 'Setup' key. The normal
operator input uses of the keyboard applies to these selections.
1. The first selection is weather or not to activate the redirection. The upper display will

show 'H OP' and the lower display can be toggled between 'NORM' and 'DIR'. These

Marathon Monitors Inc.

Page 13
MultiPro/Dualpro Programming Handbook

messages refer to normal or directed mode.
2. The second selection is the channel number where 0 refers to the master Multipro and

numbers 1 through 15 its slave Multipros. The upper display will show 'H CH' and the
lower display a number from 0 to 15.

3. The final selection is the slave temperature controller of the selected channel. Since the
slave Multipro may be a Protocol Convertor, the selection allows for sixteen temperature
slaves. The upper display will show 'H SL' and the lower display will show a slave from
' H1 ' to ' H16'.

H Opcode Special Considerations

The limit statement can not be used after the 'H' OPCODE when it is in directed mode.
If the limit statement is used it is ignored. The 'H' OPCODE usually require transmitting the
setpoint over the network. If a limit statement is used in the normal fashion, the programmer
would continuously execute the 'H' OPCODE quickly filling up the que. The limit can be used
with the 'h' OPCODE since it does not transmit data. The ramp OPCODE, 'r', only sends the
setpoint if it calculates a different value then was previously sent. However, it may be possible
for a steep ramp to fill the communication que. This will cause a 201 alarm. The 201 alarm
occurs whenever the communications que is full and the 'H' or 'r' OPCODEs attempt to send a
setpoint.

The 'H' OPCODE does not wait for the actual setpoint to equal the set value for the same
reason as above.

The 'H' and 'r' OPCODEs are effected by the write partition and the time-out partition the
same as a version 4 OPCODE. Therefore, if the selected channel is in the write partition, the
setpoint value will be written into the slave table.

The redirection feature does not know the difference between a Protocol Converter or a
Multipro. The parameters will be read or written as defined for the sixteen slaves of a Protocol
Converter. The Multipro only has eight temperature slaves and the other eight selections may be
meaningless.

The redirection feature assumes all the selections are for communicating temperature
controllers. If the selected temperature controller does not have a 2 in the low byte of the
communications status parameter, an alarm 91 will occur.

Marathon Monitors Inc.

Page 14
MultiPro/Dualpro Programming Handbook

Technical Information

The operator selections for the 'H' OPCODE redirection are located in parameter 8 of
table 31. The information is bit mapped as follows:

Bit(s) Description
0 - 3 Slave temperature controller; H1 = 0000 through H16 = 1111.

4 - 7 Channel number; 0 through 15

 8 Mode; 0 = normal, 1 = directed

9 - 15 Not assigned

A version 4 program can access this information and change the assignments at any time.

The following table list the parameters associated with the sixteen slave temperature
controllers.

Slave
Channel

Comms
Status

Setpoint

Actual
Setpoint

Actual
Process

Percent
Output

H1

38H 56

40H 64

48H 72

50H 80

58H 88

H2

39H 57

41H 65

49H 73

51H 81

59H 89

H3

3AH 58

42H 66

4AH 74

52H 82

5AH 90

H4

3BH 59

43H 67

4BH 75

53H 83

BH 91

H5

3CH 60

44H 68

4CH 76

54H 84

5CH 92

H6

3DH 61

45H 69

4DH 77

55H 85

5DH 93

H7

3EH 62

46H 70

4EH 78

56H 86

5EH 94

Marathon Monitors Inc.

Page 15
MultiPro/Dualpro Programming Handbook

Slave
Channel

Comms
Status

Setpoint

Actual
Setpoint

Actual
Process

Percent
Output

H8

3FH 63

47H 71

4FH 79

57H 87

5FH 95

H9

C8H 200

D0H
208

D8H 216

E0H
224

E8H
232

H10

C9H 201

D1H
209

D9H 217

E1H
225

E9H
233

H11

CAH 202

D2H
210

DAH
218

E2H
226

EAH
234

H12

CBH 203

D3H
211

DBH
219

E3H
227

EBH
235

H13

CCH 204

D4H
212

DCH
220

E4H
228

ECH
236

H14

CDH 205

D5H
213

DDH
221

E5H
229

EDH
237

H15

CEH 206

D6H
214

DEH
222

E6H
230

EEH
238

H16

CFH 207

D7H
215

DFH 223

E7H
231

EFH
239

Marathon Monitors Inc.

Page 16
MultiPro/Dualpro Programming Handbook

LIMIT STATEMENTS

 There are various ways to force a program to wait for something to happen. Although it
may seem that the specified condition should be easily satisfied, it is still wise to put realistic
time limits on how long the wait should be.
The following table summarizes the effect the LIMIT statement has on each OPCODE.

OPCODE

LIMIT statement

C

 LIMIT forces a wait and sets the maximum amount of
time to wait for the process to reach the setpoint +/-
0.05 % Carbon (or setpoint +/- 5 for Dewpoint control).

E

Does not effect EVENT outputs. With EVENT inputs,
it sets the maximum amount of time allowed for an
EVENT to occur.
The LIMIT statement here will cause the program to
wait for the specified EVENT input to toggle to the
specified state, either ON (.1) or OFF (.0), before
proceeding. If this does not occur within the specified
time, a LIMIT time-out alarm will occur.

The EVENT input must be held in the specified state
for at least 1 second to insure that the Programmer will
acknowledge it. Thus, a momentary push button could
not be used as an EVENT input unless some type of
latching scheme is employed.

If a LIMIT statement is not used, the program may wait
indefinitely.

H

Forces a WAIT and sets the maximum time allowed for
the temperature to reach
SETPOINT +/-10°F (+/-5°C).

The LIMIT statement here will cause the program to
wait for the measured temperature to come within
+/-10°F of the specified setpoint. If this does not occur
within the specified time, a time-out alarm will occur.
If no LIMIT statement is used, the Programmer simply
sets the specified setpoint and goes on to the next
STEP.

h

Sets the maximum time allowed for a condition to be
met.

P

Forces a wait and sets the maximum amount of time to

Marathon Monitors Inc.

Page 17
MultiPro/Dualpro Programming Handbook

OPCODE

LIMIT statement
wait for the process to reach setpoint +/-.10 carbon.

r

ILLEGAL! The r OPCODE must always be followed
by an H OPCODE.

S

Allows the soak timer to run only if the carbon is
within a specified amount of the setpoint. LIMIT
statement data is interpreted as %C (IE: L 0.05 means
+/-.05%C deviation
allowed).

W

The LIMIT statement here will cause the program to
wait for the specified flag to toggle to the specified
state, either ON (.1) or OFF (.0), before proceeding. If
this does not occur within the specified time, a LIMIT
time-out alarm will occur. If a LIMIT statement is not
used, the program may wait indefinitely.

When a LIMIT statement follows any OPCODE not described above it is interpreted as a

NOP.

The maximum time that a LIMIT statement will accept is 40 hours. Use the Programmer
Status Display during a wait operation to reveal the time remaining before the timeout alarm will
occur.

PROGRAMMER ALARMS

Programmer alarms can occur from several sources. Programmed alarms, 1 - 79, are used to
indicate when some action is required by the operator. Deviation alarms, 81, 83, and 85,
indicate potential problems with the process or sensors. The limit alarm, 93, also indicates a
process problem. Alarms 91 and 92 indicate communications problems with the temperature
buss or the events buss respectively. Other alarms indicate problems with the programs.

When a programmer alarm occurs, the ALARM DISPLAY page overrides the display. Either a
message or the alarm number will be displayed on the screen. The messages either indicate the
action required or the nature of the problem. Also, at the bottom of the screen the acronym
‘PAL’ (Programmer ALarm) is displayed followed by the alarm number.

Press any key or the knob and the ALARM ACKNOWLEDGE page is displayed. By rotating
the knob, the operator can choose between ‘NO’, ‘YES, W/O SKIP’, or ‘YES, WITH SKIP’
The operator can either acknowledge the alarm with either ‘YES’ choice or not with the ‘NO’
choice. Then press ‘Enter’ or the knob to return to the normal display. If the alarm is not
acknowledged, ‘PAL’ followed by the alarm number will continue to flash at the bottom of the

Marathon Monitors Inc.

Page 18
MultiPro/Dualpro Programming Handbook

screen and any alarm contact configured for the programmer alarm will remain in the alarm
state. In most cases either ‘YES’ choice will have the same effect. The alarm will be cleared,
the ‘PAL’ at the bottom of the screen will disappear, and any alarm contact configured for the
programmer alarm will return to the normal state. The ‘SKIP’ applies to a limit alarm, 93. If the
choice is ‘W/O SKIP’, then the limit timer is reset and the program waits for the process the
achieve the desired value. If the choice is ‘WITH SKIP’, then the program continues at the step
following the limit statement.

The ALARM DISPLAY page only pops up automatically when an alarm occurs when there is a
no alarm condition. If the previous alarm is not acknowledged, a new alarm will overwrite the
old alarm and its number will be displayed at the bottom of the screen following the ‘PAL’.

RECIPE PROGRAM ALARMS
ALARM DESCRIPTION
81 "TEMPERATURE DEVIATION ALARM"
83 "%CARBON DEVIATION ALARM"
85 "THERMOCOUPLE VERIFICATION ERROR"
91 "TEMPERATURE CONTROLLER COMMUNICATIONS ERROR"
92 "OPTO BUSS COMMUNICATIONS ERROR"
93 "RECIPE LIMIT TIME OUT"
95 "RECIPE ERROR ILLEGAL RAMP"
96 "POWER FAILURE"
97 "RECIPE ERROR ILLEGAL SUBROUTINE CALL
98 "RECIPE ERROR BAD JUMP

LOGIC PROGRAM ALARMS
ALARM DESCRIPTION
100 "Foreground; Bad load executing jump"
101 "Background; Bad load executing jump"
104 "Foreground; Step too big in jump"
105 "Background; Step too big in jump"
106 "Foreground; Prog number too big in jump"
107 "Background; Prog number too big in jump"
110 "Foreground; Bad load executing GOSUB"
111 "Background; Bad load executing GOSUB"
112 "Foreground; GOSUB too deep"
113 "Background; GOSUB too deep"
114 "Foreground; Step too big in GOSUB"
115 "Background; Step too big in GOSUB"
116 "Foreground; Program number too big in GOSUB"
117 "Background; Program number too big in GOSUB"

Marathon Monitors Inc.

Page 19
MultiPro/Dualpro Programming Handbook

LOGIC PROGRAM ALARMS
ALARM DESCRIPTION (cont'd)

118 "Foreground; Bad load on return from GOSUB"
119 "Background; Bad load on return from GOSUB"
120 "Foreground; Bad load executing run program opcode"
121 "Background; Bad load executing run program opcode"
124 "Foreground; Step too big executing run program opcode"
125 "Background; Step too big executing run program opcode"
126 "Foreground; Prog number too big executing run program opcode"
127 "Background; Prog number too big executing run program opcode"
130 "Foreground; Read indirect too big"
131 "Background; Read indirect too big"
132 "Foreground; Write indirect too big or request queue full"
133 "Background; Write indirect too big or request queue full"
134 "Foreground; SYNC out but not master unit"
135 "Background; SYNC out but not master unit"
136 "Foreground; Send program to slave but not master unit"
137 "Background; Send program to slave but not master unit"
138 "Foreground; Start program in slave but not master unit"
139 "Background; Start program in slave but not master unit"
140 "Foreground; Program send value not valid"
141 "Background; Program send value not valid"
142 "Foreground; Data stack pushed too deep"
143 "Background; Data stack pushed too deep"
144 "Foreground; Data stack empty on pop"
145 "Background; Data stack empty on pop"
146 "Foreground; Block specification incorrect"
147 "Background; Block specification incorrect"
148 "Foreground; Block send but not a Master or que is full"
149 "Background; Block send but not a Master or que is full"
252 "Foreground; Bad load when restoring a program on a Power Fail Restore"
253 "Background; Bad load when restoring a program on a Power Fail Restore"
255 "Background; Bad load RPOG 1 on AUTO Prog Start"

Marathon Monitors Inc.

Page 20
MultiPro/Dualpro Programming Handbook

SAMPLE RECIPE PROGRAMS

The following are some sample programs. These are provided to show how the Step/
OPCODE process works. These are examples only and not intended for any specific
application. Please check your engineering to find the application programs best suited for you.

Program # 100

This program can be used to test the Dewpoint in a % output deviation.

Step

OPCODE

Mnemonic

Data

Description

1

u

Couti

90

Is output higher than 90% ?
Indicating full gas.

2

B

bran

09.03

if yes, branch to step 9; if no branch
to step 3.

3

u

Couti

-90

Is output higher than -90%?
Indicating full air.

4

B

bran

05.12

If yes, branch to step 5; if no,
branch to step 12.

5

c

Carbi

00.20

Is dewpoint higher than 20 %?

6

B

bran

07.15

If yes, branch to step 7; if no branch
to step 15.

7

c

Carbi

00.50

Is dewpoint higher than 50%?

8

B

bran

15.01

If yes branch to step 15; if no
branch to step 1.

9

E

EVENT

0.1

Turn on generator alarm.

10

A

ALARM

20

System is using too much gas.

11

B

bran

17.17

Branch to step 17.

12

E

Event

0.1

Turn on generator alarm.

13

A

Alarm

21

System is using too much air.

14

B

bran

17.17

Branch to step 17.

15

E

Event

0.1

Turn on generator alarm.

16

A

Alarm

22

Dewpoint deviation outside of 40 +
10

17

E

Event

0.0

Turn off generator alarm.

Marathon Monitors Inc.

Page 21
MultiPro/Dualpro Programming Handbook

Step

OPCODE

Mnemonic

Data

Description

18 I Delay 120 Delay interval of 2 minutes.

19

B

bran

1.1

Branch to step 1.

This program forms a loop. It will be necessary to stop it to start another.

Marathon Monitors Inc.

Page 22
MultiPro/Dualpro Programming Handbook

Program 200
This sample program used to be called the pre-load Carbon and temperature routine. It

requires previously loaded programs to load the batch to be treated, sound alarms of a specified
number code and operators to know what an "Alarm 79" or an "Alarm 78" is. The operators are
expected to know how to respond to an alarm message.
 See OPERATIONS MANUAL for specifics.

Step

OPCODE

Mnemonic

Value

Description

1

h

TEMPI

1400

Is temperature above 1400°F?

2

B

bran

03.05

If yes branch to step 3; If no branch
to step 5.

3

h

TEMPI

1750

Is temperature above 1750°F?

4

B

BRAN

05.06

If yes branch to step 5; if no branch
to step 6.

5

J

JUMP

174

sound alarm 79 and Quit.

6

c

CARBI

00.30

Is carbon above .3% ?

7

B

BRAN

08.10

If yes branch to step 8; if no branch
to step 10.

8

c

CARBI

01.50

Is carbon above 1.5 % ?

9

B

BRAN

10.11

IF yes branch to step 10; if no
branch to step 11.

10

J

JUMP

173

Sound alarm 78 and quit.

11

J

JUMP

149

Jump to loading routine.

Marathon Monitors Inc.

Page 23
MultiPro/Dualpro Programming Handbook

Sample Program 3
The following program is a sample boost diffuse carburizing cycle. NO events or

communicating temperature controller is involved. the program does not make use of LIMIT
statements to guard against furnace malfunction in steps 2,4 or 6. The next program will cover
those items.

Step

OPCODE

Mnemonic

Data

Description

1

C

CARBS

0.00

exclude enriching gas during
start up.

2

h

TEMPI

1700

Is temperature above 1700°F?

3

B

BRAN

04.02

If yes branch to step 4; if no
branch to step 2.

4

S

SOAK

2.00

Soak for 2 hours.

5

C

CARBS

1.20

Carbon setpoint of 1.2 %.

6

S

SOAK

9.00

soak for 9 hours.

7

C

CARBS

.80

Carbon setpoint .80 %.

8

S

SOAK

4.00

soak for 4 hours.

9

A

ALARM

01

cycle complete sound alarm to
alert operator.

The soak times were for heating the load, boosting the carbon levels, diffusing the carbon
through the atmosphere. The two carbon settings were to boost the carbon level and stabilize it.

Marathon Monitors Inc.

Page 24
MultiPro/Dualpro Programming Handbook

Sample Program 4
 The following program will demonstrate the protective functions of the communicating

temperature controller and the LIMIT statement. Notice there are more opportunities for alarms
to sound in this program. This should allow better control of the treating situation.

Step

OPCODE

Mnemonic

Data

Description

1

C

CARBS

0.00

Exclude enriching gas during heat
up.

2

H

TEMPS

1750

Temperature setpoint of 1750°F.

3

L

LIMIT

3.00

wait 3 hours for furnace to reach +
10°F, if not limit time out alarm 93
occurs.

4

S

SOAK

3.00

Soak for 3 hours while load reaches
furnace temperature.

5

C

CARBS

1.20

Carbon setpoint 1.2%.

6

L

LIMIT

2.00

Wait 2 hours while Carbon reaches +
10% C, if not limit time out alarm 93
occurs.

7

S

SOAK

8.00

Soak for 8 hours during boost
carburizing.

8

C

CARBS

0.80

Reduce Carbon setpoint to .80% C.
for diffusion.

9

L

LIMIT

0.50

Wait for the carbon to come within +
10 % of new carbon setpoint, if not
time out alarm 93 occurs.

10

S

SOAK

3.00

Soak for 3 hours diffusion time.

11

A

ALARM

0012

Alarm sounds to notify operator that
cycle has completed.

Marathon Monitors Inc.

Page 25
MultiPro/Dualpro Programming Handbook

Sample Program 5

Sometimes more complex programming will be needed. The following program calls up
programs as subroutines or jumps.

Step

OPCODE

Mnemonic

Data

Description

1

h

TEMPI

1400

Is temperature above 1400?

2

B

BRAN

03.05

If yes branch to step 3; if no, to
step 5.

3

h

TEMPI

1750

is furnace temperature 1750°F?

4

B

BRAN

06.05

If yes, branch to step 6; if no
branch step 5.

5

J

JUMP

174

Jump to program 174: sound alarm
79 and quit.

6

c

CARBI

00.30

Is Carbon above .3%?

7

B

BRAN

08.10

If yes branch to step 8; if no, to
step 10.

8

c

CARBI

01.50

Is Carbon level above 1.5%?

9

B

BRAN

10.11

If yes branch to step 10; if no, to
step 11.

10

J

JUMP

173

Jump to program 173: sound alarm
78 and quit.

11

G

GOSUB

149

Go to the loading subroutine and
return.

12

h

TEMPI

1400

Is the temperature 1400°F?

13

B

BRAN

14.12

If yes branch to step 14; if no, to
step 12.

14

S

SOAK

02.00

Soak the load for 2 hours while it
comes up to heat.

15

r

RAMP

03.00

Ramp the temperature for 3 hours.

16

H

TEMPS

1750

Set the temperature to 1750 for the
ramp.

Marathon Monitors Inc.

Page 26
MultiPro/Dualpro Programming Handbook

DELETING A STEP:

(1) Go to the step to be deleted, using either [Enter] or [Shift].
(2) Press [Setup].

EXITING THE EDITOR WITHOUT SAVING THE PROGRAM:

(1) Press [Setpt] at any time to get to the SAVE display.
(2) Press [Setpt] again and the edited program is lost (the copy in non-volatile

memory is unchanged).

EXITING THE EDITOR WITH PROGRAM SAVED:

(1) Edit through step 24 as required inserting NOP’s wherever no operation is to be
executed.

Or
 (1a) Press [Setpt] at any time to get the SAVE display..

(2) Select the Program Number in the SET display using the Arrow keys until the
desired Program Number is displayed.

(3) Press [Enter], the program is stored in that location previously is now lost.

NOTE: If SAVE display is showing and it is desired to change a step before saving, press

the [Shift] key to back up to the desired step.

Displays and other Editing Notes
Since there is no room to display the step number while displaying the opcode,
destination, and source; the program number being edited and the step number are
flashed on the set and process displays before displaying the step data. Each press of the
[Enter] or [Shift] keys which change the step number will cause the program number and
step to be flashed.

The Process Display has Pnnn for program number.
The Set Display has S nn for step number.

Editing a Program

 ENTERING THE PROGRAM EDITOR*:

(1) Press [Enter] + [Setpt] .
(2) Select the program to be edited using the Arrow keys.

Marathon Monitors Inc.

Page 27
MultiPro/Dualpro Programming Handbook

(3) Press [Enter].
*Note that the unit will allow editing of a program that might be running.
This editing will not affect the currently-running copy of this program
until the program is actually restarted, either manually or by a program
jump.

EDITING PROGRAM STEPS:

(1) Use the left and right arrow keys to select digits to be changed (either the
opcode or the data).

(2) Use the up and down keys to change the selected digit.
(3) Press [Enter] to move forward to the next step.

Or
(3b) Press [Shift] to move backward to the previous step.

 INSERTING A STEP:

(1) Go to the step where the new step is to be inserted, using either the [Enter]
or [Shift] keys. The displayed opcode and data, as well as all higher step
number opcodes and data, will be moved up one step when the step is
inserted.
Note: information in step 24 will be lost.

(2) Press [Page Disp.].
(3) Enter the new step, opcode and data.
(4) Press [Enter].

When editing an opcode, if the left-hand mnemonic character is flashing then each press
of the up or down arrow key will cause the opcode to change by 4 opcodes (see the table
of editing order of opcodes). Likewise, if the right hand mnemonic character is flashing,
then each press of the up or down arrow keys will cause the opcode to change by 1 unit.
One unit could be the same opcode changing from a source parameter to source data (or
vice versa) or changing to the next opcode. The difference between a source parameter or
source data is shown in the SET display. If the source is a parameter, then the left two
digits of the SET display are blank and the source code is shown in the right two digits. If
the source is data, all four digits of the SET display will have characters in them.

The source data is normally in hexadecimal and each digit will continue to wrap around
and affect only that digit. However, the source data can be edited in decimal by pressing
the [Prog/Auto/Man] key, when one of the source digits is flashing (i.e. editing the
source). In decimal mode however, each digit does not affect only itself, when the
number wraps around, it affects the digit next to it because addition and subtraction are
taking place. For example, if the right most digit were being edited and the up arrow was
pressed past nine instead of the display being 0000, it would now be 0010.

A GOSUB to Program number zero, or a jump to Program number zero, loads and
executes a blank (NOP) program.

Marathon Monitors Inc.

Page 28
MultiPro/Dualpro Programming Handbook

PROGRAMMING ANALOG INPUTS
One of the features of the Multipro instrument is the ability to program a linear input

such that it displays in the desired units. This is accomplished by using the input offset, input
span, and input decimal point parameters. The input offset is the value to be subtracted from the
input to achieve a zero display and has a range of -999 to 9999. The input span is a multiplying
factor and has a range of -999 to 999. The range of the input span, when used in combination
with the span's floating decimal feature, permits values whose accuracy ranges from +0.001 to
+999. The input decimal point identifies where the decimal point should be placed on the
display and has a value of 0 to 3, where 0 represents no decimal places (ie: +999) and 3
represents three decimal places (ie: +0.001). The following procedure should be followed to
determine the proper values to enter into the input parameters.
1. Place the input selection in "Linear".
2. Select and display the “DATA” pages.
3. Set the voltage representing the zero value of the process either by adjusting the process

to zero or by simulation. Adjusting the actual process is best.
 Note: the instrument will probably not be displaying zero.
4. On a sheet of paper, record the instrument reading as INZ.
5. Set the voltage representing the full scale value of the process in a similar manner as step

at.
6. On the same sheet as above, record the instrument reading as INF.
7. Determine how the process units are to be displayed and to what accuracy. ie: 0 to 50 lph

(liters per hour) could be displayed as 0 to 50, 0 to 50.0 or 0 to 50.00. Remember that if
the process does not have the accuracy to justify a high resolution (ie: 01 lph) it should
not be used. Also remember that the instrument displays only has 4 digits and if the value
is negative, only 3 digits.

8. From the display range determined in step 7., determine the full scale counts (FSC) (the
display without decimal points) and the decimal point location (IDP). In the step 7
example the 0 to 50 range would have an FSC of 50 and an IDP of 0. The 0 to 50.0 range
would have an FSC of 500 and an IDP of 1 and 0 to 50.00 range would have an FSC of
5000 and an IDP of 2.

9. Calculate the input span (ISP) as the full scale counts divided by the difference in
instrument readings (IE: ISP = FSC/(INF-INZ)).

10. Input the data into the instrument as follows:
a. Set the input offset equal to INZ
b. Set the input span equal to ISP.
c. Set the input decimal point equal to IDP.

11. Change the input selection to program "PROG".
12. Vary the process over its range to test the accuracy of the values. Minor adjustments may

be needed to achieve the desired result.
13. Record all values used and save them for future reference.
14. The results achieved will depend on how much rounding of numbers had to be done or

how far ISP is from unity (1). Should questions arise, please contact MSI Customer
Service for assistance.

Marathon Monitors Inc.

Page 29
MultiPro/Dualpro Programming Handbook

PROGRAMMING ANALOG OUTPUTS .
The Multipro instrument allows the output range of the analog outputs to be specified by

the user. This can be done providing that neither of the control loops' percent outputs have been
selected. This is achieved by Entering the proper analog output offset and range value. The
analog output offset is the value the selected variable achieves when the analog output is at its
zero value (IE: zero volts or 4 mA). The analog output range is the difference between the value
of the selected variable when the analog output is at full scale and the value of the variable when
the analog output is at its zero value. This is demonstrated with a few examples. In each of the
examples it is presumed that the analog output has previously been calibrated for 0 to 5 volts.

EXAMPLE NUMBER 1. Desire 0 to 1000°F to give 0 to 5 volt analog output. In this
case the analog output offset value is 0 and the range value is 1000.

EXAMPLE NUMBER 2. Desire 1000 to 1250 mV to give 0 to 5 volt analog output. In
this case the analog output offset value is 1000 and the range value is 250.

EXAMPLE NUMBER 3. A recorder has a 1 to 5 volt input range which is to represent 0
to 2000°F. In this case, it is necessary to interpolate at what value the analog output 0
would occur. Since 0 to 2000 is represented by a 4 volt range, the slope is 500° per volt.
Therefore, the analog output zero would occur at 500° which is what is used for the
analog output offset. The analog output range is the full scale value, 2000, minus the
offset value, -500, which is 2500.

As shown by the examples, the programmable analog output can be programmed to not only
provide the desired range, but to also compensate for differences in ranges of a recorder and the
instrument.

Marathon Monitors Inc.

Page 30
MultiPro/Dualpro Programming Handbook

MULTIPRO DATABASE

Introduction

The purpose of this document is to define a database for the Multipro. This data base
is to allow the background program a means of saving information in a structured
format for later retrieval.

Specifications

Number of files: 4

Maximum size of file: 16k bytes (8196 parameters); files 0 and 1 share the

same memory space and files 2 and 3 share the
same space. The maximum space for both files 0
and 1 is 16k (likewise for 2 and 3). Therefore if file 0
is 16k, file 1 cannot be used.

Maximum number of records: Limited by the 16k byte maximum file size and the

number of fields per record.

Maximum number of fields: 240; limited by the size of a parameter table.

Size and type of field: 1 version 4 parameter (2 bytes).

Database operations: Define file, check status, erase file, delete file, change

number of records, write record, read record, search,
read fields, erase record, read structure and write
fields.

Marathon Monitors Inc.

Page 31
MultiPro/Dualpro Programming Handbook

Version 4 programmer

All database operations are performed with one opcode, 'DM', Data Manager. The
operations of this opcode are controlled by the source data, a control block, and
sometimes the destination data. At the completion of the opcode, an error code is
written into the destination parameter and the flags set. An error code of 0 (which
means the zero flag is set) indicates the successful completion of the operation. The
other error codes are defined later.

The source data defines the operation and the file number. The file number (0 to 3) is
in the high byte and the operation code in the low byte. The operation codes are as
follows:

Code Description
 0 Read file status; error code is 0 if file valid, 1 if not. If the

destination value is non-zero, it defines the starting parameter of
the control block.

 1 Define file; Number of records and fields determined by the control

block. The destination value defines the starting parameter of the
control block. If the size of the file would over-write an existing file
or exceed memory, the file is defined as large as possible and an
error code is returned. The file is erased (data zeroed) when
defined.

 2 Erase file; This function zeros all data in a defined file without

changing its structure.

 3 Delete file; This function deletes the file by making it invalid.

 4 File re-size; This function adjusts the size of the file by changing
the number of records. The destination value defines the starting
parameter of the control block. If the number of records is less
than the old size then data in the records removed is lost. If the
number of records is increased, the data in the added records is
undefined. An error is returned if the size of the new file would
over write an existing file or exceed memory space. The number of
fields in the control block must agree with the existing value.

 5 Write record; The record specified by the control block is written

starting at the parameter specified.

 6 Read record; The record specified by the control block is read into
the parameter table starting at the parameter specified.

Marathon Monitors Inc.

Page 32
MultiPro/Dualpro Programming Handbook

 7 Search; The control block specifies the starting record, the field,

the condition code, the search value, and the search mask. The
search mask must be FFFFH for numeric searches. The condition
codes are: 0 = zero, 1 = not zero, 2 = equal, 3 = greater than, 4 =
less than, and 5 = not equal.

 8 Read fields; This function reads one field from a series of records.

 The control block specifies the starting record number, the field
number, the starting parameter in which to write, and the number of
records to read.

 9 Erase record; Sets all data in the specified record to zero.

 10 Read structure; The number of records and number of fields is

read into the control block. If the destination value is non-zero, it
defines the starting parameter of the control block.

 11 Write fields; This function writes one field to a series of records.

The control block specifies the starting record number, the field
number, the starting parameter from which to read the data, and
the number of records to write.

The control block consists of seven parameters. Since the control block is only used
when the 'DM' opcode is executed, the same control block could be used for all four
files. It is also possible to use more than one control block per file by changing the
control block specification with the status read function. Only the file define, status
read, file re-size, and read structure functions change the control block starting location.
 The seven parameters in the control block are defined as follows:

Offset Definition and use
 0 Record number; Defines the file size for the define and

change number of records functions. Defines the starting
record for the search function and is set to the record that
meets the criteria. Defines the starting record for the read
fields function and is set to the record following the last read.
 Defines the record of operation for the read record, write
record, and erase record functions.

 1 Field number; This value sets the number of fields per

record in the define file functions. This specifies the field of
operation for the search, read fields, and write fields
functions.

 2 Condition code; This value is the condition code for the

Marathon Monitors Inc.

Page 33
MultiPro/Dualpro Programming Handbook

search function. The condition code is ignored for all other
functions. The condition codes are: 0 = zero, 1 = not zero, 2
= equal, 3 = greater than, 4 = less than, and 5 = not equal.

 3 Value; This parameter specifies the value for comparison in

the search function. This also specifies the number of
records to read in the read fields function or to write in the
write fields fucntion.

 4 Mask; This parameter specifies a bit mask for the search

operation allowing individual bits or bit combinations to be
searched. Since the Data Manager does not distinguish
between numeric and logical searches, the mask must be
set to FFFFH (65535) for numeric searches.

 5 Read parameter; This value is the first parameter into which

the read function will store a record. The high byte is the
table number and the low byte the parameter number. The
read function will not cross a table boundary; therefore, the
number of parameters in the table following the start point
must be equal to or greater than the number of fields per
record.

 6 Write parameter; This value is the first parameter from

which the write function will store into a record. The high
byte is the table number and the low byte the parameter
number. The write function will not cross a table boundary;
therefore, the number of parameters in the table following
the start point must be equal to or greater than the number
of fields per record.

Marathon Monitors Inc.

Page 34
MultiPro/Dualpro Programming Handbook

Error Codes

The error codes are stored in the destination register at the completion of the function.
The branch or jump based on the zero flag can follow the 'DM' opcode to invoke an
error handling routine. Two type of errors exist, fatal and non-fatal. A fatal error
indicates that the function was aborted when the error was detected. A non-fatal error
means that the function was completed but the outcome may have been modified. All
fatal errors will have bit 7 set (i.e. be >= 128 (80H)). The following table lists the error
codes and their causes.

 ERROR CODES

Code Description Possible causes
 0 Success Function was executed.

1 File is invalid This error only occurs with the read file status

function and indicates that the file is undefined.

 2 Insufficient memory The size of file requested by the define file function or

re-size file function was larger than the
available memory. The file was successfully
defined or re-sized but with fewer records.
The number of records is written into the
control block.

 3 End of file The end of the file was reached before the

search condition was satisfied.

 F0 (240) Invalid file number The file number specified in the high byte of

the source data is greater than 3. Only 0, 1, 2,
and 3 are valid file numbers.

 F1 (241) Invalid function The function number specified in the low byte

of the source data is not defined.

 F2 (242) Bad control block spec The control block starting parameter is not

allowed because it is not valid, too close to the
end of the table, or in the reserved area of
table 0. Possible causes; invalid table number
(>31), parameter number greater than 233, Z
register greater than Z9 (249), or table 0
parameter less than 120 (78 hex).

 F3 (243) File not valid The file specified has not been defined. This

error is returned by all functions, except file

Marathon Monitors Inc.

Page 35
MultiPro/Dualpro Programming Handbook

define and status read, when the file has not
been defined.

 F4 (244) Invalid record number For most functions this error is returned if the

record number specified in the control block is
equal to or greater than the number of records
in the file. Since the record numbers are zero
based, a file with 100 records contains
numbers 0 to 99. For the file define or re-size
functions, this error occurs if the number of
records specified in the control block is 0 or
exceeds 16384.

 F5 (245) Invalid parameter This error occurs if the parameter specified in

the control block is; too close to the end of the
table for the number of fields, in a table
number greater than 31, or less than
parameter 120 (78 hex) in table 0.

 F6 (246) Invalid field number For most functions this error occurs if the field

number specified in the control block is equal
to or greater than the number of fields per
record for the file. Since the field numbers are
zero based, if there are 10 fields per record
they are numbered 0 through 9. For the file
define function, this error occurs if the number
of fields in the control block is 0 or greater than
240. For the re-size file function, this error
indicates the number of fields in the control
block is different than the file being re-sized.

 F7 (247) Not enough memory This error only occurs if the memory available

is insufficient to define a file with even 1
record. In other words, the memory available
divided by the number of fields is less than 1.

 F8 (248) Invalid condition code This error is returned by the search function

when the condition code specified in the
control block is undefined.

BASIC

BASIC will have access to the same four files as the version 4 programmer. BASIC

Marathon Monitors Inc.

Page 36
MultiPro/Dualpro Programming Handbook

has several functions and statements to access the files. BASIC has a fixed control
block and record buffer for each file. The record buffers are a fixed length of 240
parameters. BASIC can read and write all 240 parameters of each buffer at any time.
However, only the quantity corresponding to the number fields per record are read from
or written to a file.

The following BASIC statements apply to database operations.

Statement Description
GET file,record

Read the specified record from file into its buffer.

PUT file,record
Write the file buffer to the specified record of the file.

FIND file,field,value,condition,mask,record
Search the file for the value in the specified field based on the
condition code and mask, starting at the specified record. The
condition codes are: = (equal), < (less than), > (greater than), and n
(not equal). The mask is used for bit or byte manipulation and
must be hex FFFF for numeric searches.

DBA file,records,fields

Creates a file of the number of records and fields per record as
specified.

DBC file1,file2

Copies the record buffer of file2 into the record buffer of file1.

DSET file,field,data
Stores the data value into the specified field of the record buffer of
the file.

The following BASIC functions apply to the database operations:

Function Description
FST(file) Returns the file status of the specified file, 0 for a valid file or 1 for a

non-valid file.

DBF(file) Returns the number of fields per record in the specified file.
DBR(file) Returns the number of records in the specified file.

DBE(file) Returns the last error that occurred on the specified file from a

BASIC operation.

Marathon Monitors Inc.

Page 37
MultiPro/Dualpro Programming Handbook

DBL(file) Returns the current record position in the specified file.

DPARM(file,field)
Returns the data value of the specified field in the record buffer of
the file.

There are two levels of error checking on the file operations. BASIC will generate a
syntax error if the file number is greater than 3, the field is greater than 239, missing
parameters, or other typos. The syntax errors will stop the program unless an
ONERROR statement was executed. The database handler also generates error
codes. These do not stop the BASIC program. The code is stored in the control block
for each file for retrieval with the DBE(file) function. The errors for each file do not
effect other files. A successful operation writes a zero in the error location to indicate it
was completed. The error codes are the same as described for the version 4
programmer.

There are no OPEN and CLOSE statements associated with the file operations. Any of
the four files can be accessed with the GET or PUT statements at any time. Also there
is no file or record locking. BASIC and the version 4 programmer or free to trash each
others data at will. It is recommended that a field be designated just for hand-shaking
between BASIC and the version 4 programmer. For example, a value of 0 would
indicate no data in this record. A 1 would indicate that the version 4 programmer has
placed raw data in this record for BASIC to process. A 2 would indicate that BASIC has
processed the data and placed the results in the record. A 3 could then indicate that
the version 4 programmer has retrieved the processed data.

The record buffers for files 0 through 3 are actually parameter tables 53 through 56
respectively. The version 4 programmer can not access tables above 31. However,
the BASIC SETPAR statement and PARM() function can access all the tables, i.e. 0
through 56. Therefore, tables 32 through 52 are available for BASIC program usage.

Marathon Monitors Inc.

Page 38
MultiPro/Dualpro Programming Handbook

Logic Language Programmer
Program Layout

A Logic Language program consists of twenty-four (24) steps. There are two hundred (200) user
definable programs in the instrument. There can also be up to 50 fixed system programs.

An OPCODE (operation code) tells the program interpreter what to do with the destination and
the source. Each step of a program must have an OPCODE. Most OPCODEs require a
destination (IE: what is being acted upon) and a source (IE: the information needed). The
program control OPCODEs are slightly different. The program control OPCODEs do not use a
destination, but interpret it as a condition code. The OPCODE is displayed to the instrument
operator as a two character mnemonic; however, internally it is stored as an eight (8) bit byte.
One bit is reserved to specify whether the source is a parameter specification or a data word.
Another bit specifies whether the destination is in table 9 or table 16. With six bits to specify
OPCODEs it is possible to have one hundred twenty-eight (128) different OPCODEs (these are
currently over 50 OPCODEs).The table provides a description of each OPCODE in the Logic
Language programmer.

The next part of a program step is the destination. The destination is usually an instrument
parameter specification; however, the program control OPCODEs (BRANCH, JUMP, GOSUB,
etc.) use a condition code instead. The destination is displayed to the instrument operator as a
two character mnemonic; however, internally it is stored as an eight (8) bit byte which allows
two hundred fifty-six (256) destinations to be specified. Refer to the instrument parameter
section for a detailed description of each instrument parameter. Most OPCODEs change the
information in the destination parameter, where the result of the operation is being stored. The
program control OPCODEs do not use a destination, but interpret it as a condition code. The low
two bits of the destination byte is decoded into one of the four condition codes: unconditional
(UN), less than (LT), greater than (GT), or zero/equal to (ZE).

The last part of the step is the source. The source may be either a parameter specification or a
data word. When the source is a parameter specification it is of an identical format as the
destination. When it is a data word, the source is a sixteen (16) bits 2's complement binary
integer. This means that the source can have a value ranging from -32,768 to +32,767. The
source parameter is never changed by any OPCODE except the exchange OPCODE and is only
used as data or reference.
A program step requires an eight bit OPCODE, an eight bit destination, and a sixteen (16) bit
source for a total of thirty-two (32) bits (ie: four bytes). A program requires twenty-four (24)
steps of four bytes each plus four bytes of overhead for a total of one hundred (100) bytes.
Therefore, the two hundred (200) user definable programs require twenty thousand (20,000)
bytes of nonvolatile memory.

Marathon Monitors Inc.

Page 39
MultiPro/Dualpro Programming Handbook

The following list will clarify the opcodes for Multipro and the Dualpro.

MULTIPRO EQUIVALENTS OF DUALPRO VER 4 OPCODES

Multipro -- Dualpro
NO OPER --
ADD AD
EXT ANALOG AI
AND AN
ABSOLUTE AV
BIT TEST BI
BRANCH NOT BN
BRANCH BR
BANK SELECT BS
COPY BLOCK CB
CLOCK READ CK
COMPLEMENT CO
COMPARE CP
DEC BR NOT DB
DECREMENT DE
DELAY DL
DATA BASE DM
DATA SAVE DS
DIVIDE DV
EXCHANGE EX
GOSUB NOT GN
GOSUB GS
HOLD PROG HP
NCREMENT IN
INDEX READ IR
INDEX WRITE IW
JUMP NOT JN
JUMP JP
KILL BASIC KB
KILL PROG KI
MULT/DIVIDE MD
MULTIPLY ML
NEGATE NG
OR OR
PULL DEST PD
POP STACK PS
RUN BASIC RB
READ INDIR RD
RESET BIT RE
ROTATE LEFT RL

Multipro -- Dualpro
RAMP RP
ROTATE RGHT RR
RUN SLAVE RS
RUN PROG RU
SET CLOCK SC
SAVE DEST SD
SET BIT SE
SHIFT LEFT SL
SEND PROG SP
SHIFT RIGHT SR
SEND SYNC SS
STORE ST
SUBTRACT SU
SYNC SY

Marathon Monitors Inc.

Page 40
MultiPro/Dualpro Programming Handbook

WRITE INDIR WR
XOR XR

Marathon Monitors Inc.

Page 41
MultiPro/Dualpro Programming Handbook

Alphabetical Summary of Program OPCODEs
OPCODE Name Flag Description

AD Add Y DEST = DEST + SRC

AI Analog Input Y Read external analog

 raw data

AN And Y Logically AND DEST

 and SCR, result in DEST

AV Absolute Value Y DEST = | DEST |

BI Bit Test Y Test bit in DEST, bit

 number in SRC

BN Branch Not T Branch to a step based

 on condition not true

BR Branch T Branch to a step based

 on condition true

BS Bank Select N Select bank of Z resisters

CB Copy Block Y Copy Block

CK Clock Y Reads clock parameters

CO Complement Y Logically complement DEST

CP Compare Y Compare DEST to SRC

DB Dec Bran N DEC DEST and branch to SRC

 step if result not 0

DE Decrement Y Decrement Destination

DL Delay Y Pauses programs for short

 period of time

DM DataBase Y DataBase Manager

OPCODE Name Flag Description

DS Data Save Y Data Save

DV Divide Y DEST = DEST/SRC

EX Exchange T Exchanges source and DEST

 data

GS Gosub T Call a subroutine based on

 condition true

Marathon Monitors Inc.

Page 42
MultiPro/Dualpro Programming Handbook

GN Gosub Not T Call a subroutine based on

 condition not true

HP Hold Program Y Holds program based on

 condition

IN Increment N Increments destination

IR Indexed Read N Stores into DEST value of

 parameter at SRC plus

 value of FX (IF FX=4,

 IR(SP), (Z0)=ST(SP), (Z4))

IW Indexed Write T Stores SRC into parameter

 at DEST plus value of

 FX (If FX=1, IW(SP),

 (Z0)=ST(SX),(Z0))

JP Jump T Jump to program based on

 condition true

JN Jump Not N Jump to a program based on

 condition not true

KB Kill Basic N Kill (stop) basic program

OPCODE Name Flag Description

KI Kill Y Kill (stop) background program

ML Multiply Y DEST = DEST * SRC

MD Multiply/Divide Y DEST = DEST * FX/SRC

NG Negate N DEST = -DEST

_ NOP Y No operation

OR Or N Logically OR DEST and SRC,

 result in DEST

PD Pull DEST N Pull DEST from data stack

PS Pop Stack N Pop last call out of program

 stack

RB Run Basic N Run basic program

RD Read N Read Indirect, DEST = (SRC)

RE Reset Bit Y Reset bit in DEST, bit number

Marathon Monitors Inc.

Page 43
MultiPro/Dualpro Programming Handbook

 in SRC

RL Rotate Left N Rotate DEST left bit out left

 into right

RP Ramp Y Ramp DEST to SRC value over

 time in ACCO

RR Rotate Right N Rotate DEST right bit out

 right and left

RS Run Slave N Run program in slave, SRC

 = Number and Step

RU Run N Run program, SOURCE =

 Number and Step

OPCODE Name Flag Description

SD Save DEST N Save (push) DEST on data

 stack

SE Set Bit N Set bit in DEST, bit number

 in SRC

SC Set Slave Clocks Y Sends the master's time to

 the slaves' clocks

SL Shift Left N Shift DEST left by SRC time,

 insert zeros

SP Send Program Y Send program, SRC=Number to

 send and Number to save

SR Shift Right N Shift DEST right by SRC

 times, insert zeros

SS Send Sync N Send sync commands to

 slaves

ST Store Y Store SRC to DEST

SU SUB N DEST = DEST - SRC

SY SYNC N Wait for sync flag

WR Write Y Write indirect, (DEST)

 = SRC

XR XOR Logically XOR DEST and

Marathon Monitors Inc.

Page 44
MultiPro/Dualpro Programming Handbook

 SRC, result in DEST
Note:
1. DEST = DESTINATION REGISTER
2. SRC = SOURCE REGISTER OR DATA VALUE
3. Y = FLAGS CHANGED, N = NO EFFECT, T = TESTED

Marathon Monitors Inc.

Page 45
MultiPro/Dualpro Programming Handbook

Command Definition and Format
The following table lists each command, the definition of the command and the format.

OPCODE Description

AV ABSOLUTE VALUE
Definition: The ABSOLUTE VALUE replaces the destination parameter with its absolute

value. This OPCODE does not require a source.
Format: dd is the destination code

AD ADD
Definition: The ADD OPCODE adds the source to the destination using sixteen bit signed

integer arithmetic.
Format: dd is the destination code

 or XXXX is the data
 ss is the source code

AI ANALOG INPUT
Definition: Specified by the source, and places the data in the destination; changing the flags.
Format: dd is the destination

 or XXXX is the data
SS is the source code

AN AND

Definition: The AND OPCODE performs a bit by bit logical AND on the destination and
source and places the result in the destination.

Format: XXXX is the data code or
 SS is the source code dd is destination
Command Definition and Format (Continued)
OPCODE Description

BI BIT TEST
Definition: The BIT TEST OPCODE examines the destination bit, specified by the source,

and if a logical one sets the greater than flag (GT) and if a logical zero sets the
zero/equal flag (ZE), the destination is unchanged.

Format: dd is the destination code.
 XXXX is the data

SS is the source code

Example: The BIT TEST is used in conjunction with the BRANCH and BRANCH NOT
functions as follows:
BI dd XXXX
BR ZE 'for BIT = 0

Marathon Monitors Inc.

Page 46
MultiPro/Dualpro Programming Handbook

or BN ZE 'for BIT = 1

BN BRANCH NOT
Definition: The BRANCH NOT OPCODE is the same as the BRANCH except that the

condition code must NOT be satisfied to execute the BRANCH. There is one
exception, a BRANCH NOT UNconditional will always execute just like the
BRANCH UNconditional.

Format: dd is the modifier code, or
 which may be one of the

 following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)
XXXX is the data
SS is the source code

Marathon Monitors Inc.

Page 47
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

BR BRANCH
Definition: The BRANCH OPCODE is used to transfer program control within a program.
Format: dd is the modifier code, or
 which may be one of the

following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)
XXXX is the data
SS is the source code
BS (blank select)

BS Bank Save

Definition: The BANK SAVE OPCODE is used to change Z register banks. There are 16
 banks (0 - 15) of register Z8 thru ZF.

Format: The condition code must be or
 satisfied For the bank select

to occur.

Marathon Monitors Inc.

Page 48
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

CK CLOCK
Definition: The CLOCK OPCODE takes the real time clock parameter specified by the

source and places it in the destination; changing the flags.
Format: dd is the destination code

 or XXXX is the data
SS is the source code
Source Value Parameter

0 Year 0-99, represents 1980-2079
1 Month 1-12
2 Day 1-31
3 Hour 0-23, 0=midnight, 23= 11:00 pm
4 Minute 0-59
5 Second 0-59
6 Day of Week 1-7, 1=Sunday, 7=Saturday
7 Not Assigned

CB Copy Block

Definition: The COPY BLOCK OPCODE will copy the block specified by the source into
 the block specified by the destination. The block is specified by the block
 number in the low byte and the channel number (slave table) in the high
byte. Only block numbers 0 through 9 are valid except for channel 0 where 16
through 25 are also valid. The extended parameters (bank 2) are specified by
block numbers 16 through 25. Valid channel numbers 0 through 15 where 0 is
 the instruments own table. An invalid block specification, either source or
destination, will cause an error 146 or 147 (foreground or background
respectively).

The copy block can also send a block to a slave instrument. The destination block
is specified as above and then the slave channel address is placed in the high
nibble (i.e. channel address *4096). If the instrument is not a master or the
communication que is full, then an error 148 or 149 (foreground or background
respectively) will occur.

Format: XXXX is the data code or
 SS is the source code dd is
destination

Marathon Monitors Inc.

Page 49
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

CO COMPLEMENT
Definition: The COMPLEMENT OPCODE performs a bit by bit complement of the

destination (IE: a 0 becomes a 1 and a 1 becomes a 0). No source is required.
Format: dd is the destination code

CP COMPARE
Definition: The COMPARE OPCODE changes the condition code flags depending on the

relationship of the destination to the source. Neither the destination nor the source
are changed by this OPCODE. If the destination is greater than the source, then
the GT flag is set. Likewise, if the destination is less than the source, then the LT
flag is set; if the source and destination are equal, then the ZE flag is set.

Format: dd is the destination code
 or XXXX is the data SS is the

source code

DB DECREMENT BRANCH NOT ZERO
Definition: The DECREMENT BRANCH NOT ZERO OPCODE subtracts one from the

destination. If the result is not zero then program control is passed to the step
specified by the source. This is a very powerful OPCODE for loop counting.

Format: dd is the destination code
 or XXXX is the data

SS is the source code

Marathon Monitors Inc.

Page 50
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

DE DECREMENT
Definition: The DECREMENT OPCODE subtracts one from the destination parameter value.

No source is required.
Format: dd is the destination code

DL DELAY
Definition: The DELAY OPCODE is used to pause the program for a short period of time.

The source is the delay time in seconds whose maximum is 250. Any value
greater than 250 is treated as if it were 250. If the condition code is not satisfied,
then no delay occurs.

Format: dd is the modifier code,
 which may be one of the

following: GT (greater than)
 LT (less than)
 ZE (zero/equal)

UN (unconditional)
 DS (data save)

DM DATA MANAGER

Definition: The DATA MANAGER opcode calls the database program. The destination
parameter would receive the error code or if no error the source data is the
operation code.

Format: dd is the modifier code,

Marathon Monitors Inc.

Page 51
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

DS DATA SAVE
Definition: The DATA SAVE OPCODE will push the source data onto the data stack

(different from program stack).
Format: dd is the destination code

DV DIVIDE
Definition: The DIVIDE OPCODE divides the destination by the source using sixteen bit

signed arithmetic.
Format: dd is the destination code

 XXXX is the data
SS is the source code.

EX EXCHANGE

Definition: Exchanges the source for the destination (ie: St Z1 10, St Z2 13, EX Z1 Z2,
Z1=13, Z2=10). Source and destination values won't matter, they simply swap.
No effect on flags. If the source is data then the data is stored in the destination,
all the destination is host.

Format: dd is the destination
 or code XXXX is the data

SS is the source code

Marathon Monitors Inc.

Page 52
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

GS GOSUB
Definition: The GOSUB works in the same manner as the JUMP except that the present

program number and step are saved on the program stack before the jump is
executed. When the new program ends, it will RETURN to the original program
at the step following the GOSUB and continue from there.

Format: dd is the modifier code,
 or which may be one of the

following:
 GT (greater than)
 LT (less than)
 ZE (zero/equal)
 UN (unconditional)
 XXXX is the data
 SS is the source code

GN GOSUB NOT

Definition: The GOSUB NOT OPCODE is the same as the GOSUB except that the condition
code must NOT be satisfied to execute the GOSUB. There is one exception, a
GOSUB NOT UNconditional will always execute just like to GOSUB
UNconditional.

Format: dd is the modifier code, or
 which may be one of the

following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)
XXXX is the data
SS is the source code

Marathon Monitors Inc.

Page 53
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

HP HOLD PROGRAM
Definition: The HOLD PROGRAM OPCODE, 'HP', is used to place a program in hold or

release a program from hold. When executed from a foreground program, the
background program is placed or released from hold. Likewise, when executed
from a background program, the foreground program is placed or released from
hold. The HP OPCODE is conditional and operates only if the condition is true.
The source data is used to determine if a program is to be placed in hold or
released from hold. If bit 0 of the source data is 1 then the other program is placed
into hold and if 0 the other program is released from hold. The other bits of the
source data have no effect. The hold condition is identical to placing a program in
hold from the front panel. The operator can release a program from hold
regardless of how it was placed in hold. Likewise, a program can release another
program from hold regardless of how it was placed in hold. If a program attempts
to place a program in hold that is already in hold there is no effect, IE: it stays in
hold. If a program attempts to release a program from hold which is already in run
mode, there is no effect. In other words, no damage is done by multiple attempts:

Format: dd is the modifier or
 code, which may be one of

the following:
LT (less than)
ZE (zero/equal)
UN (unconditional)

Marathon Monitors Inc.

Page 54
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

IN INCREMENT

Definition: The INCREMENT OPCODE adds one to the destination parameter value. No
source s required.

Format: dd is the destination code

IR INDEXED READ
Definition: The INDEXED READ OPCODE is similar to the STORE OPCODE in that it is

used to store the value of the source into the destination. However with the
INDEXED READ, the value stored in the (FX) parameter will be added to the
address of the source parameter prior to the store operation. (i.e. If (FX)=2 and a
IR (Z0), (R0) is performed, it would be equivalent to ST (Z0), (R2).) The high
byte of FX is the table number and the low byte is a parameter offset.

Format: XXXX is data
 or SS is source data

IW INDEXED WRITE
Definition: The INDEXED WRITE OPCODE is similar to the STORE OPCODE in that it is

used to store the value of the source into the destination. However with the
INDEXED WRITE, the value stored in the (FX) parameter will be added to the
address of the destination parameter prior to the store operation. (IE: If (FX)=2
and a IW (Z0), (R0) is performed, it would be equivalent to ST (Z2), (R0).) The
high byte of FX is the table and the low byte is a parameter offset.

Format: dd is destination or
 xxxx is data ss is source

code

Marathon Monitors Inc.

Page 55
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

JP JUMP

Definition: The JUMP OPCODE is used to transfer program control to another program. The
source is the program number (either data or the contents of a parameter) which
will be loaded and run. The low byte is the program number and the high byte, if
not zero, is the step number. If the high byte is zero then the program is started at
step one. The JUMP OPCODE is executed only if the condition code is satisfied,
otherwise, it is treated a NOP.

Format: dd is the modifier
 code, which may be

one of the following:
 GT (greater than)
 LT (less than)
 ZE (zero/equal)
 UN (unconditional)
 XXXX is the data
 SS is the source code

JN JUMP NOT
Definition: The JUMP NOT OPCODE is the same as the JUMP except that the condition

code must NOT be satisfied to execute the JUMP. There is one exception, a
JUMP NOT UNconditional will always execute just like the JUMP
UNconditional.

Format: dd is the modifier code, or
 which may be one of the

following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)
XXXX is the data
SS is the source code

Marathon Monitors Inc.

Page 56
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

KB KILL BASIC
Definition: The KILL BASIC OPCODE forces a control-C into the BASIC interpreter input

buffer. If the condition code is not satisfied, it is treated as a NOP.
 dd is the modifier code,
 which may be one of the

following:
 GT (greater than)

LT (less than)
ZE (zero/equal)
UN (unconditional)

KI KILL

Definition: The KILL OPCODE will stop a program if the condition code is satisfied. If the
KILL OPCODE is executed in a foreground program, the background program is
stopped. Likewise, if the KILL OPCODE is executed in a background program,
the foreground program is stopped.

Format: dd is the modifier
 code, which may be

one of the following:
 GT (greater than)
 LT (less than)

ZE (zero/equal)
 UN (unconditional)
 XXXX is the data
 SS is the source code

ML MULTIPLY

Definition: The MULTIPLY OPCODE multiplies the source times the destination using
sixteen bit signed arithmetic and stores the result in the destination.

Format: dd is the destination code
 or XXXX is the data

SS is the source code

MD MULTIPLY/DIVIDE
Definition: The MULTIPLY/DIVIDE multiplies the destination times the factor (parameter

FX) producing a 32 bit signed result. The 32 bit result is then divided by the
source producing a 16 bit signed result which is then stored in the destination.

Format: dd is the destination code
 or XXXX is the data

 SS is the source code
Command Definition and Format (Continued)
OPCODE Description

Marathon Monitors Inc.

Page 57
MultiPro/Dualpro Programming Handbook

NG NEGATE

Definition: The NEGATE OPCODE replaced the destination parameter with its 2's
complement (IE: the negative value). This OPCODE does not require a source.

Format: dd is the destination code

NOP NO OPERTATION
Definition: The NOP is no operation code. It's only purpose is to take up space in a program.

Since the programs are of fixed length (twenty-four (24) steps), the unused
locations must have something in them and that is the purpose of a NOP.

Format: N/A

OR LOGICAL OR
Definition: The OR OPCODE performs a bit by bit logical OR on the destination and source

and places the result in the destination.
Format: dd is the destination code

 or XXXX is the data
SS is the source code

PD PULL DESTINATION

Definition: The PULL DESTINATION OPCODE pulls a value off of the data stack and
stores it into the destination parameter. (See the SAVE DESTINATION, SD).
There is a separate stack for foreground and background programs.

Format: dd is the destination code

PS POP STACK
Definition: This is an advanced program feature which removes the calling program return

information from the program stack, therefore, the program will not return to the
calling program.

Format: N/A
 .

Marathon Monitors Inc.

Page 58
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

RB RUN BASIC
Definition: The RUN BASIC OPCODE forces a RUN command into the BASIC interpreter

input buffer if a BASIC program is not running. The SRC value is the line
number at which the BASIC program will start. If bit 15 of the source is set, then
BASIC will run without clearing its variables. If bit 14 the source is set, then
BASIC will continue from where it was stopped.

Format: dd is the modifier code,
 or which may be one of the

following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)
xxxx is the data
ss is the source data.

RD READ INDIRECT

Definition: The READ INDIRECT OPCODE is like a STORE OPCODE except that the
source value is interpreted as an address and the parameter specified by that
address is then stored into the destination. For example, if the source was a data
word of value six (6), the value of the sixth parameter will be stored in the
destination not the value six (6). If the high byte of the source is not zero, it is
interpreted as a channel number (IE: channel number times 256). This allows the
network master to access parameters from the slave instruments.

Format: dd is the destination code

 or XXXX is the data
SS is the source code

OPCODE DESCRIPTION

RE RESET BIT
Definition: The RESET BIT OPCODE forces a bit in the destination to a logical zero. The

source specifies which bit, 1-15.
Format: dd is the destination code

 or XXXX is the data
SS is the source code

Marathon Monitors Inc.

Page 59
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

RL ROTATE LEFT
Definition: The ROTATE LEFT OPCODE rotates the destination sixteen bit value to the left.

The source specifies how many bit positions to shift. The high order bits shifted
out of the word are inserted in the low order bits.

Format: dd is the destination code
 or XXXX is the data

SS is the source code
RP RAMP

Definition: The purpose of a RAMP is to change a parameter at a constant rate over a period
of time. The ramp generator needs to know which parameter to ramp, what the
ending value should be and how long to take. Since this is three pieces of
information and only two items can be specified in a program step, the RAMP
requires that the time, in minutes, be stored into accumulator 0 (Z0) before the
RAMP step. The destination specifies which parameter will be ramped and the
source is the ending value. Once a ramp has been started accumulator 0 (Z0) and
the source, if a parameter, can be changed. The RAMP OPCODE sets up and
starts the ramp generator. This program does not stop at the RAMP and wait,
therefore, the program is free to perform other operations. Only one RAMP can
be operating at a time, therefore, if another RAMP OPCODE is executed before
the ramp generator has finished, the first ramp is aborted and the new one started.
If the program should end, or should the instrument be removed from program
mode, the ramp will be aborted. If the foreground program is in Ver 4 mode, only
a foreground program can initiate a ramp. If the foreground program is in Ver 3.5
mode, the background program can initiate a ramp. This ramp does not effect and
is unaffected by the Ver 3.5 ramp.

Format: dd is the destination code
 or XXXX is the data

SS is the source code

Marathon Monitors Inc.

Page 60
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

RR ROTATE RIGHT
Definition: The ROTATE RIGHT OPCODE rotates the destination sixteen bit value to the

right. The source specifies how many bit positions to shift. The low order bits
shifted out of the word are inserted in the high order bits.

Format: dd is the destination code
 or XXXX is the data

SS is the source code

RS RUN SLAVE
Definition: The RUN SLAVE OPCODE will start a program running in a slave instrument.

The value in the destination is the slave channel number, the source low byte is
the program number, and the source high byte is the starting step number (zero
will start at step one). The program will run in the foreground of the slave unless
bit 15 of the source is set will start a background program.

Format:
 or XXXX is the data

SS is the source code

Marathon Monitors Inc.

Page 61
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

RU RUN
Definition: The RUN OPCODE will start a program at the program number and step

specified in the source (same format as the JUMP). If the condition code is not
satisfied, it is treated as a NOP. A foreground program will start a background
program and background program will start a foreground program.

Format: or
 dd is the modifier code, which may be
one of the

following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)
XXXX is the data
SS is the source code

SD SAVE DESTINATION
Definition: The SAVE DESTINATION OPCODE will push the value of the destination

parameter onto the data stack (different from the program stack), this allows the
destination parameter to be used for some other purpose. (See the PULL
DESTINATION, PD.) There is a separate stack for the background and
foreground programs.

Format: dd is the destination code

Marathon Monitors Inc.

Page 62
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)

OPCODE Description

SE SET BIT

Definition: The SET BIT OPCODE forces a bit in the destination to a logical one. The source
specifies the bit number. The bit number must be from zero to fifteen where zero
is the least significant bit.

Format: dd is the destination code
 or XXXX is the data

SS is the source code

SC SET SLAVE CLOCKS
Definition: The SET SLAVE CLOCKS OPCODE commands the communications processor

to set the Real Time Clocks of the slave instruments to the time of the sending
instrument. If the sending instrument is not a master, or if the condition code is
not satisfied, then the OPCODE is treated like a NOP.

Format:
 dd is the modifier code, which may be
one of the

following:
GT (greater than)
LT (less than)
ZE (zero/equal)
UN (unconditional)

SL SHIFT LEFT

Definition: The SHIFT LEFT OPCODE shifts the destination sixteen bit value to the left. The
source specifies how may bit positions to shift. The high order bits shifted out of
the word are lost. Binary zero's are inserted in the low order bits.

Format: dd is the destination code
 or XXXX is the data

SS is the source code

SP SEND PROGRAM
Definition: The SEND PROGRAM OPCODE will select a program and send it to a slave

instrument. The destination must contain the slave channel number, the source
low byte is the program number to send, and the source high byte is the program
number to save it under in the slave. If bit 15 of the destination is set then a
version 3.5 program will be sent, otherwise a version 4 program is sent.

Format: dd is the destination code
 or XXXX is the data

SS is the source code
Command Definition and Format (Continued)
OPCODE Description

Marathon Monitors Inc.

Page 63
MultiPro/Dualpro Programming Handbook

SR SHIFT RIGHT

Definition: The SHIFT RIGHT OPCODE shifts the destination sixteen bit value to the
right. The source specifies how many bit positions to shift. The low order
bits shifted out of the word are lost. Binary zero's are inserted in the high
order bits.

Format: dd is the destination
 or code XXXX is the

data SS is the source code

SS SEND SYNC
Definition: The SEND SYNC OPCODEs requests that the communications handler

send a SYNC command to the slaves. The program waits until the
communications handler acknowledges sending the SYNC command. An
error occurs if the instrument running a program with a SEND SYNC
OPCODE is not a network master.

Format: N/A

ST STORE
Definition: The STORE OPCODE takes the source value and places it in the

destination parameter.
Format: dd is the destination

 or code XXXX is the
data SS is the source code

SU SUBTRACT

Definition: The SUBTRACT OPCODE subtracts the source from the destination
using sixteen bit signed arithmetic.

Format: dd is the destination code
 or XXXX is the data

SS is the source
code

Marathon Monitors Inc.

Page 64
MultiPro/Dualpro Programming Handbook

Command Definition and Format (Continued)
OPCODE Description

SY SYNC
Definition: The SYNC OPCODE causes the program to wait until a SYNC command

is received from the network master. This allows for multiple instruments
to have their programs synchronized.

Format: N/A

WR WRITE INDIRECT
Definition: The WRITE INDIRECT OPCODE is like a STORE OPCODE except the

destination register value is interpreted as an address and the source value
is stored into the parameter specified by that address. If the high byte of
the destination value is not zero, it is interpreted as a channel
number. This allows the network master to change parameters in the slave
instruments.

Format: dd is the destination
 code XXXX is the

data SS is the source code

XOR EXCLUSIVE OR
Definition: The XOR OPCODE performs a bit by bit logical XOR on the destination

and source and places the result in the destination.
Format: dd is the destination

 or code XXXX is the
data SS is the source code

Marathon Monitors Inc.

Page 65
MultiPro/Dualpro Programming Handbook

BASIC Interpreter

AN INTRODUCTION TO BASIC
With the proper connections to a terminal, the Multipro can provide a BASIC interpreter with the
access to instrument parameters, ability to display messages on the instruments, and ability to
perform more complicated operations not available within the instrument's programmer. This
interpreter allows for full length programs to be written and run, or for single commands to be
typed in and executed. As soon as the instrument is turned on and the start-up statement appears
on the terminal screen, BASIC is ready and available. (If the BASIC port is set to BASIC. See
Setup and Configuration for details.)
Those who have some knowledge of BASIC may choose to determine which commands are
available for this version of BASIC, and then proceed. For those who wish to review, or for
those who are unfamiliar with BASIC, the first few sections provide a brief introduction.

Program Lines
Programs consist of "lines" of statements and comments. The structure of these lines can be very
strict in some programming languages, and more flexible in others. In BASIC, the structure is
generally as follows: nnn BASIC statement.

a. "nnn" indicates the line number. The line number is used as a reference point for
branching and editing. If it is necessary, an interval of ten or more is placed between lines to
allow for the addition of other lines later. IE: the first line is usually numbered 10, and the
second line 20. This allows for the addition of a line at 15, or any other integer number. This is
necessary if it was discovered that a line was forgotten or if an additional line was needed. Line
numbers can range from 1 to 9999.

b. BASIC statements are the BASIC commands and related information used to make up
the program. Statements may be either executable or non-executable. Executable statements tell
BASIC what to do and when. Non-executable statements do not cause any program action.
Examples of non-executable statements are REM. and DATA. (REM. is a remark statement
which allows for comments to be added to the program without interfering with the actual
running of the program.) Both the executable and the non-executable commands are explained in
detail later.

BASIC Characters and Reserved Words
BASIC uses both the lower and upper case letters, the digits 0 through 9, and the list of
characters in the following Table :

BASIC Characters
Character Name/Description

 = equal sign or assignment symbol
+ plus sign or concatenation symbol

 - minus sign
 * asterisk or multiplication symbol
 / slash or division symbol
 \ backslash

Marathon Monitors Inc.

Page 66
MultiPro/Dualpro Programming Handbook

 ^ caret or exponentiation symbol
 (left parenthesis
) right parenthesis
 % percent sign
 # number sign
 $ dollar sign or string type declaration
 ! exclamation point
 & ampersand
 , comma
 . period or decimal point
 ' single quotation mark (apostrophe)
 ; semicolon
 : colon or statement separator
 ? question mark (PRINT abbreviation)
 < less than
 > greater than
 " double quotation mark or string delimiter
 _ underline

Certain words have special meaning to BASIC and are therefore "reserved". Reserved words
include all BASIC commands, statements, function names, and operator names.

Constants and Numbers
Constants are the values that BASIC uses during the execution of the program. Constants can be
string (or character) constants, or they can be numeric constants.
String constants are sequences of up to 255 characters enclosed by double quotation marks, and
can be similar to any of the following forms:

a. "HELLO" or "Hello"
b. "You may have WON $1,000,000!!"
c. "Please stand by"

Numeric constants can be positive or negative numbers, cannot contain commas, and can be
entered in one of the following forms:
 a. Floating point: Both positive and negative numbers are represented in exponential
form (similar to scientific notation). The constant consists of an optionally signed number
(negative numbers need a - sign, positive numbers do not need a + sign), with or without a
decimal point, followed by the letter E and an optionally signed exponent. The E is typically read
as "times ten to the power of", and the exponent must not contain a decimal point. The following
examples should help to clarify the form of the floating point constant:

 Floating Point Constants

Number Floating Point Constant
 256 2.56E2 or 25.6E1 or 256E0

.003456 3.456E-3
 -1,000,000 -1E6

 -.0567 -5.67E-2
Note

Marathon Monitors Inc.

Page 67
MultiPro/Dualpro Programming Handbook

Floating point constants range from 1.2E-38 to 6.8E+38 (can also be written as 6.8E38).

b. Hex: Numeric constants can be entered as hexadecimal numbers with up to four digits,
and preceded by an x. The hexadecimal digits are the numbers 0 through 9, A, B, C, D, E, and F.

Hexadecimal Constants
Number Hexadecimal Constant
 256 x100
 50 x32
 672 x2A0
10,000 x2710

c. Octal: Numeric constants can be entered as octal numbers with up to six digits, preceded
by a zero. Octal numbers only use the digits 0 through 7.

Octal Constants
Number Octal Constant
 256 o400
 50 o62
 672 o1240
 10,000 o23,420

Note
All numbers in this version of BASIC are floating point, single precision (have seven or fewer

digits), and are in exponential form.

Variables
Variables are names used to represent values within a BASIC program. There are two types of

variables: numeric and string. The numeric and string variables work similar to the numeric and
string constants. Numeric variables may only contain a value that is a number, and a string
variable may only contain a character value.

The length of a string variable is not fixed, and can be anywhere from 0 to 255 characters, as
determined by the string value assigned to the string. String variables are initially assigned as
having zero characters, and therefore a zero length.

Numeric and string variables can be set to a constant, read in from data input statements, or be
the results of calculations within the program. The variable type must match the type of data
being assigned to it. Numeric variables are initially 0.

Naming Variables
BASIC variable names can be composed of a single letter, or a single letter and a single

number. The first character of the variable name must be a letter. Special characters used to
identify the type of variable are allowed as the last character (IE: $ used to indicate a character
string, as in L.$).

Declaring Variable Types
A variable's name determines its type. All variable names are considered to be numeric by

Marathon Monitors Inc.

Page 68
MultiPro/Dualpro Programming Handbook

default unless the last character of the name is a $, indicating a string character. The dollar sign
is a variable type declaration character. It "declares" that the variable will represent a string.

Arrays are variables that contain a group, or table of values under one name. Each individual

value in the array is called an element. Arrays must have the name and number of elements in the
array specified in a statement. These are known as the defining, or dimensioning statement
(DIM).

Each array element is named with the array name subscripted with a number or with numbers.

An array variable name has as many subscripts as there are dimensions in the array. The
subscript indicates the position of the element in the array (zero is the lowest position).

The following statement creates a one dimensional array that contains 30 elements: 10 DIM

L.(29)

This version of BASIC provides for one dimensional arrays, and for arrays dimensioned with

two variables in numeric constants only; string variables cannot be arrayed. Arrays cannot have
more than 4095 elements; therefore, the maximum one dimensional array is 4095 (IE: DIM
L.(4094)). Also if the program is large and/or a large number of variables are defined, an out of
memory error may occur.

Numeric Expressions and Operators
Numeric expressions can be simple constants or variables. They can also be combined by a

numeric operator to produce a numeric value. There are four categories of numeric operators:
arithmetic, functions, logical, and relational.

Arithmetic Operators
Arithmetic operators are the operators which perform the basic arithmetic functions. The

operators are listed in the table below with examples (order of operations will be explained
later).

Arithmetic Operators

Operation Operator Example Example
(BASIC)
^ Exponentiation 23=8 2^3
- Negation -5 -5
* Multiplication 2 x 3=6 2*3
/ Division 6÷3=2 6/3
+ Addition 2+3=5 2+3
- Subtraction 5-3=2 5-3

Numeric functions act like "short cuts" because they are designed to perform arithmetic

functions with little work. IE: if the square root of 121 was desired, considerable work and
programming space would be needed. However, with the use of the BASIC function SQR, the
square root can be obtained with just one program line: 10 A=SQR(121). Each function acts as a
command and is therefore listed and explained with the commands. The result of a function

Marathon Monitors Inc.

Page 69
MultiPro/Dualpro Programming Handbook

must either be assigned to a variable (A=SQR(121)), or printed (PRINT SQR(121)).

Logical Operators
Logical operators are based on Boolean algebra and perform logic operations on numerical

values. Logical operators work on 16 bit binary integer numbers from 0 to 65535. Numbers
greater than 65535 are treated as if they were 65535, and numbers less than 1 are treated as if
they were 0. The logical operators are &(AND), @(OR), and %(XOR) and are most easily
explained by the following examples:

a. &(AND): The & operator performs a bit by bit logical ANDing of the numbers. "Bit by

bit" indicates that a binary form of the number is necessary in order to properly determine the
outcome. If two bits in the same position are both 1's, then the result will be a 1. If either bit is 0,
then the result is 0.

Note: All three tables have the same numerical value, but only the binary demonstrates the

actual process which determines the outcome of the & operator.
&(AND) Examples

Binary: 0010 0111 0001 0000
 & 0000 0001 0010 1100
 = 0000 0001 0000 0000

Decimal: 10000 & 300 = 256
Hex: x2710 & x12C = x100

b. @(OR): The @(OR) operator performs a bit by bit logical ORing of the numbers. If two

bits in the same position are both 0's, then the result will be a 0. If, however, one or both bits are
1, then the result will be a 1.

@(OR) Examples

Binary: 0010 0111 0001 0000
 @ 0000 0001 0010 1100

 = 0010 0111 0011 1100
Decimal: 10000 @ 300 = 10044
Hex: x2710 @ x12C = x273C

c. %(XOR): The % operator performs a bit by bit logical XORing of the numbers. If two

bits in the same position have the same value (i.e. both are 1's or both are 0's), then the result is
0. If they have two different values, then the result is 1.

%(XOR) Examples

Binary: 0010 0111 0001 0000
 % 0000 0001 0010 1100

 = 0010 0110 0011 1100
Decimal: 10000 % 300 = 9788
Hex: x2710 % x12C = x263C

Marathon Monitors Inc.

Page 70
MultiPro/Dualpro Programming Handbook

Relational Operators
Relational operators are operators that compare two values. String values as well as numeric

values can be compared with relational operators providing that all values being compared are of
the same type. That is, a string must be compared with a string, and a numeric with a numeric.
The relational operators are as follows:

Relational Operators

Operator Relation Tested
 = Equality, also used to assign variable values

<> or >< Inequality
< Less than
> Greater than
<= or =< Less than or equal to
>= or => Greater than or equal to

Numeric comparisons can compare numeric values such as X and Y, or they can be used to

compare numeric expressions, such as X+Y and X*Y/3. String comparisons compare string
values in an alphabetic fashion. Lowercase letters are considered greater than uppercase letters,
and all letters are considered greater than numbers that are contained in the string (numbers not
contained in a string cannot be compared with a string). If one string has a smaller number of
characters than another, then it is considered to be less than the other string. Blank spaces do
affect the comparisons: "UP " is greater than "UP", because of the extra space. Unless a variable
is used to represent them, all string constants must be enclosed in quotation marks when being
compared. IE: if X$="hello" it can be compared in any of the following ways with another
string:

a. X$="hello"
b. X$ > "hi"
c. "hello" > "hi"
d. "hello" > Y$

Order of Execution
When performing numeric operations, it is important to understand the order in which BASIC

executes each operation. For example, one might think that 2+3*4 would equal 5*4 or 20 when
in actuality, the operation equals 2+12 or 14. The order in which BASIC executes operations, or
the order of operations, is as follows:

a. Operations contained within parentheses ()
b. Function calls are evaluated first (IE: the SQR command)
c. Arithmetic operations are performed next, in the following order:

I. ^
ii - (negation)
iii. *,/ (in the order they appear from left to right)
iv. +,- (in the order they appear from left to right)

d. Relation operators
e. Logical operators, in the following order:

I. & (AND)

Marathon Monitors Inc.

Page 71
MultiPro/Dualpro Programming Handbook

ii. @ (OR)
iii. % (XOR)

BASIC Speed Hints
Two programs that perform the same operation but are written in different ways can perform

at different speeds. This is because of the manner in which BASIC carries out commands. For
programs to perform as quickly as possible

a. Define any constants used in the program as variables. ASCII to floating point is a slow
process.

b. Define the most used numeric variables first. Variables are stored and searched in the
order defined except for string variables which move as their length changes.

 c. Place the most commonly used subroutines near the beginning of the program. BASIC
starts at the beginning to search for line numbers.

BASIC Commands
The first part of this section contains an alphabetical summary of the BASIC commands. The
second part will contain each command listed separately, explained in more detail, and with
examples.

Marathon Monitors Inc.

Page 72
MultiPro/Dualpro Programming Handbook

Summary of Commands, Functions, Statements, & Operators
(In Alphabetical Order)
ABS(x) Absolute value of x
& (Logical AND) Logical AND as bit mask determination.
 for <expr>&<expr>
AND Used in the IF...THEN statements to logically AND conditions
ATN(x) Arctangent of x (x in radians)
AWAKE Awake an instrument from Sleep Mode

BFCLR Clears the communications input buffer
BGET(x) Gets a value from protected memory
BLOCK Locks the BASIC program so that it will not be inadvertently changed.
BON Break ON, allows CNTLC to stop program execution
BOFF Break OFF, prevents CNTL-C from stopping program execution
BSAVE Stores a value in protected memory
BUNLOCK Unlocks the BASIC program so that it can be changed.

CLEAR Clears all variables
CLOSE Closes the communications port
CLS Clears the screen (sends an ANSI escape sequence to the terminal)
CNTL-C Stop execution of current program
COS (x) Cosine of x (x in radians)
COL x,y,z Set screen colors and attributes
CONT Continues execution after STOP or break
CPH Continues execution after clearing Program Hold Flag
CUP x Cursor up x lines
CDW x Cursor down x lines
CRT x Cursor right x char.
CLF x Cursor left x char.
Summary of Commands, Functions, Statements, & Operators
(In Alphabetical Order)
(Continued)
CLN Clear to end of line

DATA value, value, Provide sequential data for READ command
DBA file, records, fields creates a file of the number of records and fields per record as

specified.
DBC file 1, file 2, Copies the record buffer of file 2 into the record buffer of file 1.
DBE (0) Returns the last error that occurred on the specified file from a BASIC

operation.
DBF (0) Returns the number of fields per record in the specified file
DBL (0) Returns the current record position in the specified file
DBR (0) Returns the number of records in the specified file.
DIM var(x, y) Provide dimensional range and allocate for numeric arrays
DPARM (file, field) Returns the data value of the specified field in the record buffer of the file.
DSET

Marathon Monitors Inc.

Page 73
MultiPro/Dualpro Programming Handbook

file, field, data Stores the data value into the specified field of the record buffer of the file.

ECHK (0) Checks the status of a message sent out the Events Port
EDIT 'nn' Allows the editing of line 'nn'
END Signifies the end of program execution
EOF(0) Returns a 0 if a complete message has been received thru the

communications port, otherwise returns a 1

EREC(0) Gets a reply from the Events Port
ERR$(0) Returns a string which contains the line number and the error
ESEND Sends a message out of the Events Port
EXB Executes an instrument background program
EXF Executes an instrument foreground program
EXP(x) Calculates the value of e to power x

FOR var= FOR loop and counter with <expr> to expr> optional step
(STEP <expr>)
FIND file, field, value, condition, mask, record Search the file for the value in the specified field

based on the condition code and mask, starting at the specified record.
The condition codes are = (equal),< (less than), > (greater than), and n
(not equal). The mask issued for bit or byte manipulation and must be hex
FFFF for numeric searches.

FPAR (number) Returns a pair of instrument parameters assuming that they are in floating
point format.

FRE (0) Returns the amount of available memory
FREE Prints the amount of available memory
FSET number, value Sets a pair of instrument parameters in floating point format.
FST (file) Returns the file status of the specified file, 0 for a valid file or 1 for a non-

valid.

GET file, record Read the specified record from a file into its buffer
GOSUB <line #> Call routine at <line #>
GOTO <line #> Transfer control to <line #>

Marathon Monitors Inc.

Page 74
MultiPro/Dualpro Programming Handbook

Summary of Commands, Functions, Statements, & Operators
(In Alphabetical Order)
(Continued)

HEX$(n) Returns a hex string of the number n value from 0 to 65535 (to a

 value from 0 to FFFF)

IF <expr>(THEN) Remainder of program line up
...(ELSE) to ELSE is executed if statement(s) <expr> is true, otherwise the program

line after ELSE is executed
INCHK(0) Returns a status byte of operator input operation
INFLOAT Initiates operator input mode with floating point
INGET(0) Returns the current value of the operator input
ININT Initiates operator input mode with integers
INKEY$(0) Returns a one character string of the last key pressed at the terminal or a

null string if no key was pressed
INLOGIC Initiates operator input with yes or no response
INPUT var Read value of variable from console
INQUIT Cancels the operator input mode
INT(x) Integer value of x

(LET) var=<expr> Assign value of <expr> to variable
LIST LIST current program to the terminal
LIST (line a, line b) LIST current program to terminal from line a to line b
LOC(0) Returns the number of characters received thru the communications port
LOG(x) Calculates logarithm to base 10 of (x)
LN(x) Calculates natural logarithm x
LPRINT Print command for a “line printer” device

MGET() Receives a data transfer command to either store the values received from

the BASIC Port (instrument) or sends instrument parameter values to the
instrument

MPROC() Processes the data received from MGET
NEW Initializes BASIC; clears variables, pointers
NEW* Initializes BASIC; retains variable values
NEXT var Ending expression of FOR loop counter

ON x GOTO L., 12, Transfer control to line lx
I3,... based on the value of x
ON x GOSUB l1, Call routine at line lx based
I2, I3,... on the value of x
Summary of Commands, Functions, Statements, & Operators
(In Alphabetical Order)
(Continued)

ONERROR lll Defines the line number to send program control, should an error occur

Marathon Monitors Inc.

Page 75
MultiPro/Dualpro Programming Handbook

OPEN X,Y Opens the communications port for BASIC to use. Refer to the
communications section for details

@ (LOGICAL OR) Logical OR for bit <expr>@<expr>determination and setting
OR Used in IF...THEN statements to logically OR conditions

PM0$(A$) Returns a string for the instrument page display
PM1$(A$) Returns a string for the instrument page display
PM2$(A$) In operator input mode, updates a message
PARM(num) Returns the instrument parameter specified
PDATA (number, step) Returns the data value of recipe program, n, step, s.
PEDIT Invokes the instrument program editor
PEEK (addr) Returns the decimal value at address (addr)

POKE addr, value Stores value at address (addr)
POPCODE (n, s) Returns a one character sting which is the OPCODE of a recipe program

number, n, step, s.
POS l,c Position the cursor at line l and column c
POS (0) Returns the current line print position.
PRINT <expr> or Prints the value of <expr> to
? <expr> the terminal
PRINT or ? Sends CHR$(13) and CHR$(10) to terminal
PUT file record Write the file buffer to the specified record of the file.

RDUMP Displays a block of instrument parameters
READ var, var,... Assign data to variables from DATA statement
REC Reads a string from the communications buffer if the message is complete
REM. Remark statement (no operation)
RESTORE Resets DATA statement pointer to initial value
RETURN Return from subroutine
RND(X) Generates random number between 0 and X.
RUN Executes the current program

SDLRC Send with Delimiter and LRC; transmits a string out the communications

port after appending a delimiter, LRC, and EOT.
SEND Transmits a string out the communications port
SETPAR num, value Sets an instrument parameter to the specified value
SGN(x) Sign of x (-1 or +1)
SIN(x) Sine of x (x in radians)
Summary of Commands, Functions, Statements, & Operators
(In Alphabetical Order)
(Continued)

SIO Causes the terminal UART to be reset up

SLEEP Puts BASIC port into sleep mode
SLSTAT (0) Returns the sleep (1) or awake (0) status of an instrument

Marathon Monitors Inc.

Page 76
MultiPro/Dualpro Programming Handbook

SPB x Sets a program break point
SQR (x) Square root of x
SSP Single steps a foreground program
STOP Terminates program execution.Returns to COMMAND mode. CONT will

restart at point where execution was terminated

TAN (x) Tangent of x (x in radians)
XEQ Execute the current program without zeroing variables

% (Logical XOR) Logical XOR function
(expr>%<expr>
+,-,*,^ Arithmetic operators for add, subtract, multiply, divide and exponentiation in

floating point arithmetic
>,<,=,>=,<=,<> Comparison operators (used with IF)

Marathon Monitors Inc.

Page 77
MultiPro/Dualpro Programming Handbook

String Functions
ASC(str) Returns the decimal value of the first ASCII character in the

specified string
DAY$(0) Returns the calendar day MM-DD-YYYY
CHR$(x) Returns a single ASCII character by converting the decimal value

of x to ASCII
GET$(n) Gets n characters from the Communications Port
INPUT A$ Inputs a text string; quotation marks removed; no spaces allowed
INPUT LINE A$ Same as INPUT A$ but embedded spaces and quotation marks

allowed
INSTR(x, A$,B$) Searches for B$ in A$ beginning at position x; returns the

beginning position of B$ in A$ (or 0 if not found)
LEFT$(A$,n) Returns a string that consists of the leftmost n characters of A$
LEN(A$) Returns the number of characters in A$
MID$(A$,C, n) Returns a string of n characters from A$ beginning at character

position C
NUM$(x) Converts the number x to a string with a leading space or - sign
RIGHT$(A$,n) Returns a string that consists of the rightmost n characters of A$
SPACE$ (n) Returns a string of n ASCII spaces
STRING$(n, d) Return a string of n ASCII characters whose decimal value is d
TIME$(0) Returns the time of day (HH:MM:SS.S)
VAL(A$) Convert numeric string to numeric value
+ Concatenate (join) strings
>,<,=,>=, <=, <> Comparison operators (used with If)

Marathon Monitors Inc.

Page 78
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)

ABS
(Function)

Definition: A mathematical function that returns the absolute value of a numeric expression.

The absolute value is always positive or zero.

Format: Y=ABS(x) x may be any numeric expression.

Example: Y=ABS(x)

For x = Y will =
 3 3
 -3 3
 0 0
 -500 500
 500 500

$(AND)
(Logical Operator)

Definition: A logical operator used for bit by bit comparison. If two bits in the same position

are both 1's, then the result will be a 1. If one or both bits are not 1, then the result
is 0.

Format: <expression> & <expression>

The expressions are numeric.
Example: Binary: 0010 0111 0001 0000
 & 0000 0001 0010 1100
 = 0000 0001 0000 0000

Marathon Monitors Inc.

Page 79
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

Decimal: 10000 & 300 = 256

Hex: x2710 & x12C = x100

All three of the above examples have the same numerical value, but only the binary demonstrates
the actual process which determines the outcome of the & operator.

Notes:
The key word AND is used in IF...THEN statements to logically AND conditions. See the

IF...THEN statement for more details.

ASC
(Function)

Definition: Returns the decimal value of the first ASCII character in the specified string.

Format: Y=ASC(str)

str is the specified string of which the first ASCII character is taken.

Example: Y=ASC(X$)

For X$ = Y=
 Test 84
 test 116

ATN
(Function)
Definition: A mathematical function that returns the arctangent of a numeric expression. The

arctangent is the angle whose tangent will produce the given numerical
expression.

Format: Y=ATN(x) x may be any numeric expression. Y will be given in radians
between (-PI/2) and (PI/2). Radians may be converted to degrees by multiplying
by (180/PI). p is equal to 3.14159.

Example: Y=ATN(x)
For x = Y= Y= (in degrees
(in radians) if converted)
 -10^50 -PI/2 -90
(or any large #)
 10^50 PI/2 90
(or any large #)
.5774 PI/6 30

Explanation of Commands, Functions, Statements & Operators

Marathon Monitors Inc.

Page 80
MultiPro/Dualpro Programming Handbook

(In Alphabetical Order)
(Continued)

AWAKE
(Statement)
Definition: Used in either a program, or as a single command to awaken an instrument for use

with the BASIC interpreter. When used in conjunction with the SLEEP statement,
multi-dropped instrument communication becomes more convenient.

Format: AWAKE n :n is the address of the instrument to be awakened. The AWAKE
command is used with the @ symbol to access instruments that are in sleep mode.

Example: If the instrument at address 3 is in sleep, then the following command is used to
wake it: @AWAKE 3

BFCLR
(Statement)

Definition: Clears the communications buffer in order that no extraneous data is left to

become part of a new message.
Format: BFCLR
Example: 110 BFCLR

120 SEND A$

BGET
(Function)

Definition: Gets a numeric value from protected memory. Protected memory consists of

4608 values of memory that are normally not accessible by any process, and are
not cleared in BASIC.

Format: A=BGET(n)
Where n=0 to 4607 is the location

Example: 20 Y = BGET(1)

BLOCK
(Statement)

Definition: BASIC PROGRAM LOCK keeps the BASIC program from being accidentally

changed.
Format: BLOCK
Example: BLOCK OR 10 BLOCK
Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

BOFF
(Statement)

Marathon Monitors Inc.

Page 81
MultiPro/Dualpro Programming Handbook

Definition: Break OFF, inhibits a CNTL-C from stopping execution of a program.
Format: BOFF
Example: BOFF or 10 BOFF

Notes:
The break off option is available so that binary data can be received on the
BASIC port without program disruption.
Since there is not a way to stop the program from the BASIC port when the break
is off, this should be used with caution. The only way to stop the program is to
run an instrument program with the KB OPCODE.

BON
(Statement)

Definition: Break ON allows a CNTL-C to stop program execution.
Format: BON
Example: BON or 10 BON

BSAVE
(Statement)

Definition: Save a numeric value into protected memory.
Format: BSAVE n, m

Where: n=0 to 4607 is the location number and m is the value to be stored.
Example: 30 BSAVE 3,COS(x)

BUNLOCK
(Statement)

Definition: Unlocks the BASIC program so that it can be changed.
Format: BUNLOCK
Example: BUNLOCK OR 10 BUNLOCK

Marathon Monitors Inc.

Page 82
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

CHR$
(Function)

Definition: Converts a number to its ASCII character equivalent.
Format: Y$=CHR$ (n): n is a numeric value in the range 0 to 255.
Example: Y$=CHR$ (n)

for n= Y$=
 84 T
116 t

CLEAR
(Statement)

Definition: Clears all variables.
Format: CLEAR
Example: 10 DIM A(20): ' Define array with 21 elements

.

.

.
100 CLEAR: "Clear variables"
110 DIM A(30): "A" is redefined with 31 elements

CLOSE
(Statement)

Definition: Closes the communications port and releases it for use by the instrument.
Format: CLOSE
Example: 10 CLOSE

 CLS
(Statement)

Definition: Clears the screen.
Format: CLS

The CLS statement also sends the cursor to the home, or upper left hand corner,
position. The terminal being used must recognize the ANSI escape sequence (Vt-
100 emulation) in order for this statement to work.

Example: If the screen has been filled with excess text, or if the current screen is confusing,
a CLS will produce a blank screen and start at the upper left hand corner.

CONT
(Command)

Marathon Monitors Inc.

Page 83
MultiPro/Dualpro Programming Handbook

Definition: Resumes program execution after a break has been made.
Format: CONT

The CONT command is usually used to resume program execution after CTRL-C
has been pressed, or a STOP statement has been executed. Execution will
continue at the point the break occurred.

Example: A program is in the middle of execution and CTRL-C is pressed:
Stop at Line 40
Ok
CONT
and the program continues execution at line 40.

COS
(Function)

Definition: A math function that returns the cosine of an angle given in radians.
Format: Y=COS(x) : x is the angle expressed in radians. Degrees may be converted to

radians by multiplying the degrees by p/180. (p is equal to 3.14159)
Example: Y=COS(X)

CPH
(Statement)

Definition: Clears the Program Hold Flag and allows a program to continue executing.
Format: CPH
Example: SPB x250 'Set breakpoint on program 2 at step 5

EXF 2 'Start program 2
RDUMP 'Examine some parameter
SPB x210 'Set new breakpoint at step 16
CPH 'Allow program to continue

Marathon Monitors Inc.

Page 84
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

CTRL-C
(Keyboard Execution only)

Definition: Causes a break in a presently executing program to occur, unless BOFF has been

executed.
Format: press Ctrl-C
Example: A program is being executed that produces a number of information statements,

only one of which is presently desired. After the desired statement has occurred, a
CTRL-C will cause the program to stop execution.

 DATA
(Statement)

Definition: Stores the numeric and string constants that are accessed by the program's READ

statement.
Format: DATA constant, constant, . . .

The constants may be either numeric or string, and do not need to be surrounded
by quotes unless the string contains commas, colons or spaces. The comma is the
delimiter of the DATA statement and the colon, return or double quotation mark
(") marks the end of a line.

Example: DATA 56, Eighteen, You have just WON, "1,000,000"

DAY$
(Function)
Definition: Returns the calendar day in the form MM-DD-YYYY
Format: DAY$(0)

The returned date is in the form MM-DD-YYYY where:
MM = the numeric representation for the month
DD = the numeric representation for the day
YYYY = the numeric representation for the year

Example: If the date is March 12, 1989, then Day$(0) will return: 03-12-1989.

DBA
(Statement)
Definition: Creates a file of the number of records and fields per record as specified.
Form: DBA file, records, fields
Example: 10 DBA 0,50,15 ‘ creates file 0 with 50 records, containing 15 fields.

Marathon Monitors Inc.

Page 85
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

DBC
(Statement)
Definition: Copies the record buffer of one file into the record buffer of another.
Form: DBC file 1, File 2
Example: 100 DBC 1, 2 ‘copy file 1 record buffer into file 2

DBE
(Function)
Definition: returns the last error that occurred on the specified file from a BASIC operation
Format: X=DBE(n)
Example: 10 Print DBE(1) ‘ print the last error from file 1

DBF
(Function)
Definition: returns the number of fields per record in the specified file
Format: X=DBF(2)
Example: 10 X=DBF(2)

DBL
(Function)
Definition : Returns the current record position in the specified file
Format: L=DBL(n)
Example: 20 L=DBL(3) ‘find the current record in file 3

DBR
(Function)
Definition: Returns the number of records in the specified file
Format: R=DBR(n)
Example: 30 R=DBR(0) ‘prints how many record are in file 0

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)
DIM
(Statement)

Definition: Specifies the maximum values for array variable subscripts and allocates storage

space.
Format: DIM variable(X, Y)

Variable is the array, and x and y are the values that define the array.
Example: DIM L1(29) to create a one dimensional array with 30 storage elements.

Marathon Monitors Inc.

Page 86
MultiPro/Dualpro Programming Handbook

DIM B4(2,3) to create a two dimensional array with 12 storage
elements.

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

DPARM
(Function)
Definition: Returns the data value of the specified field in the record buffer of the specified

file.
Format: A=DPARM(file, field)
Example: 10 A=DPARM (1,2) ‘Sets A= to the field 2 of file 1's record buffer.

DSET
(Statement)
Definition: Stores the data value into the specified field of the record buffer of the specified

file.
Format: DSET file, field, data
Example: 10 F=2

20 D=500
30 DSET 1, F, D ‘Stores 500 into field 2 of file 1's record buffer.

Marathon Monitors Inc.

Page 87
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

ECHK
(Function)

Definition: Returns the status of the reply to a message sent out the Events Port with ESEND.

The status is one of four values:
0 = not ready
3 = time-out (no reply received)
6 = good reply received
15 = error code received (or bad checksum)

Format: Y=ECHK(0)
Example: 30 IF ECHK(0)=0 THEN 30 :REM. wait for reply

EDIT
(Command)

Definition: Displays a line, on the terminal, for editing.
Format: EDIT lll lll is the line number to be edited.

Ctrl-S moves the cursor to the left, and Crtl-D moves it to the right. Any key
typed is inserted in the line at the cursor.
DEL, on the keyboard, deletes the character at the cursor, and backspace (Ctrl-H)
deletes the character to the left of the cursor.
Esc, on the keyboard, aborts the editing process.
Return, on the keyboard, saves the line and ends the editing process.

Example: EDIT 120
This allows the editing of line 120 and causes it to appear on the screen.

Marathon Monitors Inc.

Page 88
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

EOF
(Function)

Definition: Returns a zero if a complete message has been received thru the communications

port; otherwise, returns a 1.
Format: Y=EOF(0)

An error occurs if the communications port is not open.
Example: 20 IF EOF(0)=0 THEN REC

EREC(0)
(Function)

Definition: Returns the last reply to an ESEND. If ECHK is 0 or 3, the reply will not relate to

the message sent.
Format: A$=EREC(0)
Example: 10 ESEND A$

20 IF ECHR=0 THEN 20
30 IF ECHR=3 THEN 100:REM Time-out Error
40 A$=EREC(0)

ERR$
(Function)

Definition: Returns a string which contains the line number and the error.
Format: Y$=ERR$(0)
Example: 100 Y$=ERR$(0)

110 ? Y$
This will print the <line number where the error occurred> and <the error
message>(i.e.: <80><OUT OF DATA>).

Marathon Monitors Inc.

Page 89
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

ESEND
(Function)

Definition: Sends a message out the Events Port after computing the required checksum and

adding the carriage return. Since the normal instrument Events communication
continues, there is a slight delay before the message is sent. (See ECHK)

Format: ESEND A$
Example: 10 A$=?"01M"

20 ESEND A$
EXB
(Statement)

Definition: Begins execution of an instrument background program.
Format: EXB n

n is the program number or the program number plus 256 times the step number.
If the step is 0, the program starts at step

Example: EXB 10 'Starts program 5 at step 4 or
 EXB 4*256+5 'Starts program 5 at step 5

or
 EXB x302 'Starts program 2 at step 3

Marathon Monitors Inc.

Page 90
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

EXF
(Statement)

Definition: Begins execution of an instrument foreground program.
Format: EXF n ,n is the program number of the program number plus 256 times the step

number. If the step is 0, the program starts at step 1.
Example: EXF 10 'Starts program 10 at step 1

or
EXF 4*256+5 'Starts program 5 at step 4
or
EXF x302 'Starts program 2 at step 3

EXP
(Function)

Definition: Calculates the exponential function. The exponential function is the number e

raised to the power x.
Format: Y=EXP(x) x may be any numeric expression less

than 88.02969
Example: Y=EXP(x)

for x= Y=
0 1

 -50 1.9287E-22
 50 5.1847E21

Marathon Monitors Inc.

Page 91
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

FIND

(Statement)
Definition: Searches the specified file for the value in the specified field. A condition code

masked starting record must also be provided. The condition codes are
• = (equal)
• <(less than)
• >(greater than)
• n (not equal)
The mask is used for BIT or BYTE manipulation and must be Hex FFFF for numeric searches.
Format: FIND file, field, value, condition, mask, record.
Example: 10 Find 1, 5, 1000, >, xFFFF, 8.

20 Print “Found at”; DBL(1)
The above example searches file 1 field 5 for the first occurrence after record 8 of
a value greater than 1000.

 FOR
(Statement)

Definition: Creates a loop to perform a set of operations a given number of times.
Format: FOR var=<expr> to <expr>(STEP X)

.

.
Next var
var is the variable used as the counter. expr are expressions used to define the
range in which the loop is performed (IE: 0-50, or X=3*Y to X=Z-5).
STEP x is an optional command that specifies what the counting increment
should be. The counter is automatically incremented by 1 if no STEP command is
given.

The operations that are performed are those located between the FOR statement
and the NEXT statement, sometimes called a FOR...NEXT loop. FOR...NEXT
loops may be nested with one another.

Example: 10 L=5:W=3
20 FOR N=1 TO L
30 PRINT W+N
40 NEXT N

Marathon Monitors Inc.

Page 92
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

FRE
(Function)

Definition: Returns the amount of available, or "free" memory.
Format: Y=FRE(0)
Example: PRINT FRE(0)

 FREE
(Statement)

Definition: Prints the amount of available, or "free" memory.
Format: FREE
Example: FREE

The amount of available memory will automatically be printed.

FST
(Function)
Definition: Reads the status of the specified file; 0 for a valid file or 1 for a not valid

(undefined) file.
Format: A=FST (file)
Example: 10 If FST (0) = 0 then 100

20 Print “File not defined”

GET$
(Function)
Definition: Get a specified number of characters from the communications port. The port

must have been previously opened before this function can be properly used.
Format: A$=GET$(n)

n = the number of characters to "GET". If there are not n characters in the buffer,
then the number of characters available will be returned (minimum of 1). Waits if
return is 0.

Example: 10 OPEN 1,4
 20 SDLRC "1Ai": REM...... Request Setpoint

30 IF EOF(0)=1 THEN 30: REM...... Wait for Reply
40 A$=GET$(LOC(0)): REM.... Get all Characters

Marathon Monitors Inc.

Page 93
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

GET
(Statement)
Definition: Reads the specified record into the record buffer of the specified file.
Format: GET file, record
Example: 10 GET 2,23 ‘get record 23 of file 2.

GOSUB
(Statement)

Definition: Calls a routine that is located at the given line number.
Format: GOSUB lll

.

.

lll is the line number at which the subroutine begins.
The RETURN statement causes the program to branch back to the line
immediately following the GOSUB statement, and is located within the
subroutine.

 GOTO
(Statement)

Definition: Branches, unconditionally, from the normal program sequence to the specified

line number.
Format: GOTO lll

lll is the line number to which the program branches.
Unlike the GOSUB, the program does not return to the line following the GOTO.

Example: 10 X=15
20 FOR I=1 TO 5000
30 Y=5*X+EXP(I*X)
40 IF Y<>83, THEN 60
50 GOTO 70
60 NEXT
70 PRINT X; Y; 165535.

Marathon Monitors Inc.

Page 94
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

HEX$
(Function)

Definition: Returns a string which represents the hexadecimal value of the decimal argument.
Format: Y$=HEX$(x)

x is a decimal number in the range 0 to
Example: Y$=HEX$(x)

for x= Y$=
256 x100
50 x32
672 x2A0

 10000 x2710

Marathon Monitors Inc.

Page 95
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

IF
(Statement)

 Definition: Makes a decision regarding program flow based on the result of an expression.
Format: IF expr THEN action (ELSE action)

expr may be any numeric expression or operation. action is the steps that the
program needs to perform next, it can be a BASIC command, or a line number
that the program should branch to. The optional ELSE can be used to define
action that should be taken if the expr is false. Multiple actions may be
performed. The logical AND and OR can be used to combine expressions for
multiple conditions with the following format:
IF expr 1 AND expr 2 THEN action
The order of the keywords AND and OR is established by placement and cannot
be altered by parenthesis. Any number of AND's/OR's can be used, in any order,
in the expression. The only requirement is that the entire IF...THEN..ELSE
statement fit within one 80 character line.
NOTE: that the AND and OR are not the same as the logical operators & and @.

Example:
 1. 10 IF X+Y>=50 THEN
 20 IF Y=Z+50 THEN Y=100:

GOTO 200 ELSE GOTO 100
 2. 10 IF A&B=C AND A$=C$ OR D@E=F THEN C=COS©

In the above example, A&B=C is expr 1, A$=C$ is expr 2, and D@E=F is expr 3.
The logical key words (AND and OR) are evaluated in the order encountered.
Therefore, expr 1, whether true or false, is ANDed with expr 2, whether true or
false and the new ANDed expression is true only if both expr 1 and expr 2 are
true. This result is then ORed with expr 3, whether true or false, and the new
expression will be true if either the ANDed expression, or expr 3 is true.

Marathon Monitors Inc.

Page 96
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

INCHK(0)
(Function)
Definition: Returns a status byte of operator input operation. Bits 4 and 5 indicate which

input mode the instrument is in (10H for logic, 20H for integer, and 30H for
float). Bits 6 and 7 indicate a key pressed. Bit 7 only (80H) equals [Enter] key
pressed. Bit 6 only (40H) equals [Shift] key pressed. Bits 6 and 7 (60H) equals
[Setpt] key pressed. Used with the INGET(0) function.

Format: X=INCHK(0)
Example: 10 X=INCHK(0)

INFLOAT
(Statement)

Definition: Initiates the operator input mode for numbers within the range of +0.000001 to

999999. The instrument will only switch
operator input mode if the instrument was in normal mode (IE: operator was not
using the keyboard).

Format: INFLOAT m$,n m$ is the message to be displayed.
n is the default, or old value.
The float mode displays the first eight characters of the messages on one
paragraph (four top, four bottom), and the value of n on another paragraph. The
two paragraphs are displayed alternately for 2 seconds each until the operator
presses a key. When the operator presses a key, the display will hold for 25
seconds. The value displayed has a d in the top display, followed by the sign of
the value, and the first two numbers. The lower display will then show the
remaining numbers.
The [Left Arrow] and [Right Arrow] are used by the operator to select the digit to
change, and then changes the digit with the [Up Arrow] and [Down Arrow] keys.
Selecting the "d" will allow the position of the decimal point to be changed with
the [Up Arrow] and [Down Arrow] keys.

Example: 10 INFLOAT "NEW DATA", +1.23456

The value and message will be displayed as follows (alternating every 2 seconds): d+1.2NEW
 3456DATA

Marathon Monitors Inc.

Page 97
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

 INGET(0)
(Function)

Definition: Returns the current value of the operator input. The value returned is always the

value on display, even if the operator has not pressed Enter.
Format: X=INGET(0)
Example: 10 X=INGET(0)

ININT
(Statement)

Definition: Initiates the operator input mode for numbers within the range of 0 to 9999. The

instrument will only switch to operator input mode if the instrument was in
normal mode (IE: operator was not using the keyboard).

Format: INIT m$,n
m$ is the message to be displayed. n is the default, or old value.

 The integer mode displays the first four characters to the message on the top
display, and the integer value of the number in the bottom display. The
[Left Arrow] and [Right Arrow] keys select thedigit to be changed, the [Up
Arrow] and [Down Arrow] keys change the digit.

Example: 10 ININT "AGE",32
The instrument display will be as follows:

AGE
 32

Marathon Monitors Inc.

Page 98
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

INKEY$
(Function)

Definition: Returns a one character string equal to the last key pressed at the terminal.
Format: Y$=INKEY$(0)

INKEY$ will only read a single character, even if several have been pressed. If no
key has been pressed, then a null string is returned ("").

Example: If a pause in the program is desired in order that setup procedures may take place,
then the following could be used:
.
60 PRINT "Press any key to continue"
70 A$=INKEY$(0)
80 IF A$ ("")THEN 70
.

INLOGIC
(Statement)

Definition: Initiates the operator input mode for yes or no responses. The instrument will only

switch to operator mode if the instrument was in normal modeIEie: operator was
not using the keyboard).

Format: INLOGIC m$, n
m$ is the message to be displayed.
n is the default, or old value.
The logic mode displays the first four characters of the message on the top
display, and a "Y" (if n is nonzero) or a "N" (if n is zero) in the bottom display.
The [Up Arrow] and [Down Arrow] keys toggle between the yes and no
response.

 Example: 10 INLOGIC "OK", 1
The instrument display will be as follows:
OK
Y

Marathon Monitors Inc.

Page 99
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

INPUT
(Statement)

Definition: Receives input from the keyboard and stores it as the given variable.
Format: INPUT var or input A$

var is the variable name under which the input information is stored. A$ is the
variable name under which input text information, quotation marks removed, and
no spaces allowed is stored.

Example: 10 INPUT X
 20 PRINT X "Squared is" X^2

INPUT LINE
(Statement)

Definition: Receives input from the keyboard and stores it as the given variable.
Format: INPUT LINE A$

A$ is the variable name under which input text information is stored. INPUT
LINE A$ allows for embedded spaces and quotation marks.

Example: 10 INPUT LINE X$
20 PRINT X$ "has just WON..."

INQUIT(0)
(Statement)

Definition: Cancels the operator input mode, and returns to the normal mode.
Format: INQUIT
Example: 10 INQUIT

Marathon Monitors Inc.

Page 100
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

INSTR
(Function)

Definition: Searches for a given string within another given string, beginning at a specified

position. The beginning position of the desired string is then returned.
Format: Y=INSTR (xA$,B$)

B$ is the string to be searched for. A$ is the string that is searched. x is the
position in A$ at which the search begins. If B$ is not found, then 0 is returned.
 x must be specified.

Example: 10 A$="checkout 57"
20 Y=INSTR (x, A$,B$)
for x= for B$= Y=
1 e 3
5 e 0
1 c 1
3 c 4

INT
(Function)
Definition: Returns the largest integer that is less than or equal to x.
Format: Y=INT(x)

x is any numeric expression.
Example: Y=INT(x)

for x= Y=
-1.1 -2
 1.1 1
-3.68 -4
 3.68 3

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

LEFT$
(Function)
Definition: Returns a character string from the first character position to the specified

character position.
Format: Y$=LEFT$(A$,n)

A$ is the specified string.
n is the character position at which the return will end.

Example: 10 A$="checkout 57"
20 Y$=LEFT$(A$,n)

Marathon Monitors Inc.

Page 101
MultiPro/Dualpro Programming Handbook

for n= Y$=
4 chec
7 checkou
2 ch

LEN
(Function)
Definition: Returns the number of characters the specified string.
Format: Y=LEN(A$)

A$ is the specified string whose character length is stored in Y.
Example: Y=LEN(A$)

for A$= Y=
check 5
Unipro 6
hi 2

LET
(Statement)
Definition: Assigns the value of an expression to a variable.
Format: LET var=exp

var is the variable name to which the expression is to be assigned.
exp is the expression that is to be assigned to the variable.
When assigning an expression to a variable name, the word LET is optional.

Example: LET Y=5*30+X^4 or Y=5*30+X^4

Marathon Monitors Inc.

Page 102
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

LIST
(Command)
Definition: Lists the current program on the screen or other specified devices.
Format: LIST (lll) (-yyy)

lll is the line number to be listed if a single line is desired; or, it is the first line to
be listed in a set of lines being listed.
yyy is the ending line to be listed is a set of lines are desired.
If no line number, or numbers, follows the LIST command, then the whole
program will be listed.

Example: LIST 55
This command will list line 55.
LIST 40-80
This command will list all program lines between 40 and 80.
LIST
This command will list the whole program.

LOC
(Function)
Definition: Returns the number of characters received into the communications buffer.
Format: Y=LOC(0)

An error will occur if the port is not opened.
Example: 10 IF LOC(0)<>0 THEN BFCLR

LOG
(Function)
Definition: Returns the logarithm to the base 10 of x.
Format: Y=LOG(x)
Example: Y=LOG(x)

for x= Y=
10 1
36 1.556
50 1.699

Marathon Monitors Inc.

Page 103
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

LN
(Function)
Definition: Returns the natural logarithm of x. The natural logarithm is the logarithm to the

base e.
Format: Y=LN(x)

x is a numeric expression greater than zero.
Example: Y=LN(x)

for x= Y=
2.7183 1.00

 10 2.3026
 56 4.0025

Marathon Monitors Inc.

Page 104
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

MGET
(Function)
Definition: Retrieves message packet from the BASIC port via a special data transfer

command.
Message pack

format: sOBBEE[dddd]CC
s Start of message character, always a less than (<) sign.
O Operation character, the software supports the following two characters:
R-Read process data (reads data values for message words from Multipro
memory) and W-Write process data (writes data values from message words to
Multipro memory).
BB Beginning word, the word specifying the address of the first word of data (all
words are 16 bit, 2 bytes).
EE Ending word, the word specifying the address of the last word of data.
dddd Optional data field, length and type is dependent on operation character.
CC Checksum, is the 16 bit sum of the operation character, and all words in the
"BB", "EE", and "dddd" fields.

Note: MGET along with MPROC perform very special functions relating solely
to communication initiated by external devices through the BASIC port. For
more specific application information, contact

 Format: X=MGET(ttt)
ttt=the time-out value in hundreds of seconds, with a maximum of 250.
If X=0, Process OK
If X=3, Time-out Error
If X=21, Proper command character not found

Example: 100 X=MGET(100):IF X=3 THEN GOTO 100
110 IF X=0 THEN X+MPROC(0)
120 GOTO 100
Notes: You must set BOFF prior to using MGET.

Marathon Monitors Inc.

Page 105
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

 MID$
(Function)
Definition: Returns the requested part of a string.
Format: Y$=MID$(A$,C, n)

A$ is a string expression.
C Is the numeric character position at which the new string is to begin.
n is the length of the new string.

Example: 10 A$=Bob Ted Chris Bill
20 Y$=MID$(A$,C, n)
For C= For n= Y$=
1 4 Bob
6 7 ed Chri
17 4 Bill

MPROC
(Function)
Definition: Processes information retrieved by the MGET function. MPROC will either send

instrument parameter values o the BASIC port or store values received from the
BASIC port into instrument parameters, based on what is asked for in the
message packet retrieved by MGET.

Format: X=MPROC(0)
If X=0, Process OK
If X=3, Time-out Error
If X=21, Proper command characters not found

Example: 100 X=MGET(100):IF X=3 THEN GOTO 100
110 IF X=0 THEN X=MPROC(0)
120 GOTO 100

Marathon Monitors Inc.

Page 106
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

NEXT
(Statement)
Definition: Instructs an active FOR loop to increment the counter and return to the beginning

of the loop.
Format: FOR var=<expr> to <expr>

.
NEXT var
The var after the NEXT is required.

Example: 10 L=5:W=3
20 FOR N=1 to L
30 PRINT W+N
40 NEXT N

NEW
(Command)
Definition: Initializes BASIC and clears all variables and pointers. The command NEW*

initializes BASIC, but retains variable values.
Format: NEW or NEW*
Example: It is desired to start work on a new program after completing the present one.

After all changes have been saved, the command of NEW, or NEW*, at the
prompt will clear all memory and provide a new working area.

NUM$
(Function)
Definition: Converts the number x to a string with a leading space, or a - sign.
Format: NUM$(x)

x is a numeric expression.
Example: 10 A$=NUM$(100)

20 ? A$,LEN(A$)
RUN
100 4

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

ON...GOTO
(Statement)
Definition: Control program flow to a subroutine based on the value of a numeric

expression.When the subroutine is finished, it returns to the line following the
ON...GOSUB. All other requirements are the same as the ON...GOTO.

Format: ON x GOTO l1, l2, l3, l4, l5, l6, l7, l8, l9, l10

Marathon Monitors Inc.

Page 107
MultiPro/Dualpro Programming Handbook

x is a numeric expression.
l1 through l10 are line numbers to which control is passed if the integer value of x
I s1 thru 10 respectively. Line numbers must exist in the program and are
separated by commas. It is not necessary to include all ten line number; however,
no line numbers can be skipped.

Example: 10 ON Y/2 GOTO 110, 120, 130, 140
20 GOSUB 640

 If Y/2=1 then program execution goes to line 110.
 If Y/2=2, execution goes to line 120, =3 goes to 130, and =4 goes to 140.

Otherwise execution continues at the next line (line 20 in this example).

ON...GOSUB
(Statement)
Definition: Control program flow to a subroutine based on the value of a numeric expression.

When the subroutine is finished, it returns to the line following the ON...GOSUB.
All other requirements are the same as the ON...GOTO.

Format: ON x GOSUB l1, l2, l3, l4, l5, l6, l7, l8, l9, l10
x is a numeric expression.
l1 thru l10 are line numbers of the subroutines.

Example: 10 INPUT "Your Selection":A
20 ON A GOSUB 100,200,300,400
30 REM. Subroutines return here

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)
ONERROR
(Statement)
Definition: Defines the line number to which program control is sent should an error occur.
Format: ONERROR lll

lll is the line number to which program control is sent.
ONERROR without a line number will cancel the error trapping, thereby causing
errors to stop program execution.

Example: ONERROR 120

This sends program control to line 120 should an error occur.

OPEN
(Statement)
Definition: Opens the communications port for BASIC to use.
Format: OPEN x, y

x is the mode.
y is the ASCII value of the end of the message character.
Mode selects half or full duplex, 7 bit even parity, or 8 bit no parity, and the
BAUD rate. Mode is a number from 0-15 that can be calculated in the following
manner:

Marathon Monitors Inc.

Page 108
MultiPro/Dualpro Programming Handbook

x=D+P+B
D=0 for half duplex, or 8 for full duplex.
P=0 for 7 bit even parity, or 4 for 8 bit no parity.
B=0 for 1200 BAUD, 1 for 4800 BAUD, 2 for 19.2K BAUD, 3 for 76.8K

BAUD, 16 for 2400 BAUD, 17 for 9600 BAUD, or 18 for 38.4K BAUD.

The end of message character can be any valid ASCII character. Normally this
would be a 13 (carriage return) for normal terminal operation, or a 4 (EOT) for
instrument communications. The end of message character must be a 4 to use the
SDLRC statement. If the end of message character is 255 then it is ignored.

Example: 20 OPEN 3,4

This opens the communications port for half duplex, even parity, 4800 BAUD
with an EOT as the end of the message character.

Marathon Monitors Inc.

Page 109
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

@ (OR)
(Logical Operator)
Definition: Logical operation used for bit by bit comparison. If two bits in the same position

are both 0's, then the result will be 0. If, however, one or both bits are 1, then the
result will be a 1.

Format: <exp>@<exp>
exp are numeric.

Example: Binary: 0010 0111 0001 0000
 @ 0000 0001 0010 1100
 = 0010 0111 0011 1100

 Decimal: 10000 @ 300 = 10044
Hex: x2710 @ x12C = x273C

All three of the above examples have same numerical value, but only the binary
demonstrates the actual process which determines the outcome of the @ operator.

Notes: The keyword OR is used in IF...THEN statements to logically OR
conditions. See the IF...THEN statement for more details.

PMO$
(Function)
Definition: Displays a string in the instrument page display. When executed, the command

forces the page display to be displayed.
Format: B$=PMO$(A$)

A$ is a string from which the 8 farthest left characters are available on the
instrument page display.
If the string is less than 8 characters, it is padded with spaces
Decimal points are merged with other characters, and therefore for do not count
as a character themselves.

Example: 10 A$="1086+45.3"
20 B$=PMO$(A$)
The message on the instrument display page will contain 1086 on the top and
+45.3 on the bottom. The whole message is returned because the "." will be
merged with the 5 and will not require a space of it's own.

Marathon Monitors Inc.

Page 110
MultiPro/Dualpro Programming Handbook

 Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

PM1$
(Function)
Definition: Displays a string on the instrument page display. When executed, the command

forces the page display to be displayed.
Format: B$=PM1$(A$)

Behaves the same as that of PMO$ except that it has its own location in the
instrument display page (IE: two individual messages can be displayed in the
instrument at the same time, and can be viewed by simply changing the display
page).

Example: See PMO$

PM2$
(Function)
Definition: Updates the string displayed in the operator input mode, allowing the BASIC

program to scroll or otherwise change the message. Unlike PMO$ and PM1$,
PM2$ does not automatically force the instrument display.

Format: PM2$(A$)
A$ is the string message to be displayed.

Example: See PMO$.

PARM
(Function)
Definition: Returns the instrument parameter specified.
Format: A=PARM(num)

num is normally 0 to 239 and applies to the value of the local instrument.
If the instrument is a network master, then a slave instrument can be accessed by
adding 256*CH addr to the parameter number. (CH addr is the channel address)
If the number is entered in hexadecimal, note that 100 (hex) = 256.

Example: A=PARM(x206)
This accesses parameter 6 of the second slave channel.

Marathon Monitors Inc.

Page 111
MultiPro/Dualpro Programming Handbook

 Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)
PEDIT
(Command)
Definition: PEDIT allows access to the instrument program editor commands.
Format: PEDIT

The PEDIT commands are explained in the following:
 1. nn OP DE SR Comment

Enter a step by typing the step number (nn, space, the OPCODE (OP), space, the
destination (DE), space and the source (SR).Step numbers can be 1 or 2 digits and
must be between 1 and 24.
OPCODE is a 2-digit valid programmer OPCODE.
Destination is a 2-digit valid destination register, or when appropriate, a condition
code.
SouRce is the source entered in one of three ways. If specifying a register, then it
must be a 2-digit valid register. If specifying decimal data, it must be entered with
at least 3 digits (IE: enter 2 as 002). If specifying Hex data, then the first character
must be a lower case x followed by 1 to 4 valid Hex digits.
Comments following the SouRce are ignored.
One space character after the SouRce indicates a comment. Comments are not
stored in the instrument; however, programs downloaded from a computer may
have comments.

2. CLR
Clears the edit buffer so that all 24 steps are NOPs.

3. DUMP
DUMP lists the program in a single column format. This command allows the
program to be easily "captured" by a terminal emulator program on a computer
and saved into disk.

 Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

PEDIT
(Command)
Format (Continued)

4. EDIT nn
Puts the step nn into the line edit buffer so that changes can be made. The editor is
in insert mode; CTRL-S moves the cursor left, CTRL-D moves the cursor right.
DEL deletes the character under the cursor, BS deletes the character to the left of
the cursor, ESC aborts editing without saving the changes, and ENTER saves the
changes.

5. END
Returns to the BASIC interpreter.

6. HELP

Marathon Monitors Inc.

Page 112
MultiPro/Dualpro Programming Handbook

Lists the PEDIT commands on the terminal with a short description.
7. LIST

Displays the program in a two column format. Source data is displayed in both
hexadecimal and decimal.

8. LOAD nn
Loads the instrument program number nn into the editor for modification.

9. SAVE nn
10. Error Codes

SN Step number is invalid
OP OPCODE is invalid
DE Destination is invalid
SR Source is invalid

PEEK
(Function)
Definition: Returns the decimal value read from the indicated memory position.
Format: A=PEEK(addr)

addr is the memory position from which the information is to be read.
Example: A=PEEK(54)

This reads the numeric value (16-bit signed) from memory position 54.

Marathon Monitors Inc.

Page 113
MultiPro/Dualpro Programming Handbook

 Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

POKE
(Statement)
Definition: Stores information into the specified memory address.
Format: POKE n, m

n is the memory location to which the information is to be stored.
m is the information that is to be stored in that location

Example: POKE 32,100
This places information specified by the numeric value of 100 into location 32.

PRINT
(Statement)
Definition: Displays the specified data onto the screen.
Format: PRINT <exp>

exp is a list of numeric and or string expressions separated by commas, blanks, or
semicolons.
All string constants must be enclosed within quotation marks.
? can be used instead of PRINT to obtain the same results.
If the PRINT, or ?, command is used with no expression, then a line feed is
executed.

Example: 10 X=560
20 Y=5000
30 PRINT "If your number is "X", then you have just won "Y"
READ B$,A4
This reads the first available data from the DATA statement as a string variable,
and the second as a numeric variable.

PUT
(Statement)
Definition: Writes the file buffer to the specified record of the file.
Format: PUT file, record
Example: 10 PUT 0,15 ‘writes the record buffer of file 0 to record 15.

Marathon Monitors Inc.

Page 114
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

REC
(Statement)
Definition: Reads the received message from the communications buffer and stores it as the

given string variable.
Format: REC A$

A$ is the variable to which the received information is stored.
An error occurs if the communications port is not opened.
Do not use REC if the end of message character in the open statement is set to
255.

Example: 10 OPEN 3,13
20 SEND "Hello"+CHR$(13)
30 REC A$

REM.
(Statement)
Definition: Allows for the insertion of explanatory remarks in a program.
Format: REM. remark

or
'remark
remark may be any sequence of characters.
REM... statements are not executed and, therefore, do not affect the executing of
the program or its variables.

Example: 10 REM.
this program is designed to output the area.

RESTORE
(Statement)
Definition: Allows DATA statements to be reread from the beginning of the program.
Format: RESTORE
Example: 10 READ A1, B1, C

20 RESTORE
30 READ D1, E1, F
This allows for the same information to be read into variable D1 as was read into
A1, and the same information to be read into E1 as was read into B1, etc.

Marathon Monitors Inc.

Page 115
MultiPro/Dualpro Programming Handbook

 Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

RETURN
(Statement)
Definition: Used in conjunction with a GOSUB statement, this program returns program

operation from a subroutine back to the main program.
Format: GOSUB lll

.

.
RETURN
lll is the line number location of the subroutine.

Example: 100 GOSUB 200: X=4
110 ? X
120 END
200 RETURN

RIGHT$
(Function)
Definition: Returns a string from a designated number of characters at the end of a specified

string.
Format: Y$=RIGHT$(A$,n)

A$ is the string function from which the new string will be formed.
n is the number of characters from the end of A$.

Example: 10 A$=⋅"checkout 57"
20 Y$=RIGHT$(A$,n)
for n= Y$=
8 eckout57
4 ut57
1 7

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)
RND
(Function)
Definition: Generates a random number between 0 and X.
Format: RND(X)

X is a numeric expression used as the upper limit of the random number
generation.
If X is omitted, a number is generated between 0 and 1.

Example: RND(40)
This statement will produce a random number between 0 and 40.
Y=RND(40)
This statement will store the number produced by a random number generation

Marathon Monitors Inc.

Page 116
MultiPro/Dualpro Programming Handbook

between 0 and 40 in the variable Y.

RUN
(Command)
Definition: Begins execution of the current program.
Format: RUN
Example: RUN

SDLC
(Statement)
Definition: Adds a delimiter, LRC, and EOT to a string and transmits it out the

communications PORT.
Format: SDLRC A$

This statement is used when communicating with MSI or Barber Colman
instruments. An error occurs if the communications port is not open.

Example: 10 OPEN 3,4
20 S=1200:REM desired setpoint
30 A$="1Al"+NUM$(S)
40 SDLRC A$

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)
SEND
(Statement)
Definition: Transmits a string out the communications port.
Format: SEND A$

An error occurs if the communications port is not open.
Example: 10 OPEN 3,13

20 SEND "HELLO"+CHR$(13)
30 REC A$

SETPAR
(Statement)
Definition: Sets an instrument parameter to the specified value.
Format: SETPAR num, value

num is usually between 0 and 239 and represents the value of the local
instrument.
value represents the value to which the specified instrument parameter is to be set.
If the instrument is a network master, then a slave instrument can be accessed by
adding 256*_CH addr to the parameter number (CH addr is the channel address).
If the number is entered in hexadecimal, note that 100 (hex)=256.

Example: SETPAR x206,50
This sets parameter 6 of the second slave instrument to 50.

SGN

Marathon Monitors Inc.

Page 117
MultiPro/Dualpro Programming Handbook

(Function)
Definition: Returns the sign of x.
Format: Y=SGN(x)

x is any numeric expression.
If x>0 then SGN x=1. If x<0 then SGN
x=-1. If x=0 then SGN x=0.

Example: Y=SGN(x)
for x= Y=

 50 1
-50 -1

 0 0

Marathon Monitors Inc.

Page 118
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

SIN
(Function)
Definition: A mathematical function that returns the sine of an angle given in radians.
Format: Y=SIN(x)

x is an angle given in radians.
Degrees may be converted to radians by multiplying the degrees by p/180. (p is
equal to 3.14159)

Example: Y=SIN(x)
for x= Y=
PI/3 .8660
3PI/4 .7071

SIO
(Statement)
Definition: Causes the terminal UART to be reset to 9600 BAUD, no parity, 8 bits. Used if

setup values are being lost or need to be checked.
Format: SIO
SLEEP
(Statement)
Definition: Used in either a program or as a single command to place all instruments, whose

BASIC ports are connected, to sleep. A single instrument may then be activated
with the AWAKE command, or the @ symbol may be used to issue a command to
all of the instruments. When used in conjunction with the AWAKE statement,
multi-dropped instrument communication becomes more convenient.

Format: SLEEP

Note: An @RUN will start a program in every instrument, or an @ may be placed
in front of each command of a program, allowing for the same program to be
downloaded to each instrument simultaneously.

Example: 10 SLEEP
20 @RUN

Notes: When in the sleep mode, BASIC will accept any characters thru its port.
If a program is running and the instrument is asleep, any print commands given in
the program will be discarded, and not transmitted.

The @ symbol at the beginning of a line will allow BASIC to receive that line if
the instrument is asleep.

Marathon Monitors Inc.

Page 119
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

SLSTAT(0)
(Function)
Definition: Returns the sleep or awake status of an instrument. This command is used in a

program in the instrument in order to determine if communications to the terminal
is possible.

Format: X=SLSTAT(0)
If the instrument is awake, a 0 is returned.
If the instrument is in sleep mode, then a 1 is returned.

Example: 10 X=SLSTAT(0)
20 IF X=0 THEN PRINT "Hello":REM. only print if awake

SPACE$
(Function)
Definition: Returns a string with a specified number of space characters.
Format: Y$=SPACE$(n)

N is the number of spaces the string is to contain.
Example: 10 ?"HI",SPACE$(5),"THERE"

RUN
HI THERE

SPB
(Statement)
Definition: Sets a program breakpoint at a specific program number and step for debugging

the foreground program. When the breakpoint is reached, the program is placed in
hold and the breakpoint cleared.

Format: SPB n
n is 256*program number + the step number of the breakpoint.

Example: SPB 10*256+7 'sets breakpoint at step 7 of program 10. SPB x0A07 'same as
above using Hex data

Marathon Monitors Inc.

Page 120
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

SQR
(Function)
Definition: Returns the mathematical square root of the specified number.
Format: Y=SQR(x)

x is a number greater than or equal to 0.
Example: Y=SQR(x)

for x= Y=
 4 2

81 9
53 7.28

SSP
(Statement)
Definition: Single steps a foreground program in order to assist in debugging the program.
Format: SSP

SSP will allow a program to hold to execute one step. If a program was not in
hold, it will be placed in hold.

Example: SSP 'set single step mode
EXF 10 'start program 10, only 1 step is executed
SSP 'next step is executed

STOP
(Statement)
Definition: Terminates program execution and returns to command mode.
Format: STOP

CONT will restart the program.

STRING$
(Function)
Definition: Returns a string with a specified number of ASCII characters whose decimal

value is also given.
Format: Y$=STRING$(n, d)

n is the number of ASCII characters the string is to contain.
d is the decimal value of each character in the string.

Example: 10 B$=STRING$(4,42)
20 ? B$
RUN

Marathon Monitors Inc.

Page 121
MultiPro/Dualpro Programming Handbook

 Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

TAN
(Function)
Definition: A mathematical function that returns the tangent of an angle specified in radians.
Format: Y=TAN(x)

x is the angle in radians.
Degrees may be converted to radians by multiplying the degrees by p/180. (p is
equal to 3.14159)

Example: Y=TAN(x)
for x= Y=
PI/3 1.732
3PI/4 -1.000

TIME$
(Function)
Definition: Returns the time of day in the form HH:MM:SS.S.
Format: B$=TIME$(0)

The time is returned in the form HH:MM:SS.S, where:
HH =the hour
MM=the minutes
SS.S=the seconds.

Example: If the time is precisely 5 after 11 the morning, then TIME$(0) will return:
11:05:00.0

VAL
(Function)
Definition: Converts a numeric string to a numeric value.
Format: Y=VAL(A$)

A$ is the numeric string to be converted to a numeric value. The string must
contain only numbers.

Example: 10 A$="1000.0E3"
20 Y=VAL(A$)
Y will equal 1,000,000

Marathon Monitors Inc.

Page 122
MultiPro/Dualpro Programming Handbook

Explanation of Commands, Functions, Statements & Operators
(In Alphabetical Order)
(Continued)

XEQ
(Command)
Definition: Executes the current program without zeroing the variables.
Format: XEQ
Example: 10 A=A+1

20 ? A
RUN
1
XEQ
2
XEQ
3
RUN
1

% (XOR)
(Logical Operator)
Definition: A logical operator used for bit by bit comparison. If two bits in the same position

have the same value (IE: both are 1's or both are 0's), then the result is 0. If they
have two different values, then the result is 1.

Format: <expression>%<expression>
The expressions are numeric.

Example: Binary: 0010 0111 0001 0000
 % 0000 0001 0010 1100

 = 0010 0110 0011 1100
Decimal: 10000 % 300 = 9788
Hex: x2710 % x12C = x263C
All three of the above examples have the same numerical value, but only the
binary demonstrates the actual process which determines the outcome of the %
operator.

BASIC ERROR TABLE

The following error message will be displayed when the running program encounters the
described error.

Marathon Monitors Inc.

Page 123
MultiPro/Dualpro Programming Handbook

Error Messages.

Message

Description

UNDEFINED LINE

Program execution is transferred to a line number,
which does not exist in the current program.

FILE NOT OPEN

If the Comm port is not open for send or receive

OUT OF MEMORY

A variable is assigned which is too large for
available memory space.

MATH

Numbers used during math operations are too large.

OPEN DENIED

When the BASIC port is being used by another
process and an open is attempted.

STACK

Temporary data stack is full.

SYNTAX

Improper usage or form.

TYPE MISMATCH

Improper usage of variable types (types do not
match).

RETURN W/O GOSUB

RETURN statement found and no GOSUB was
called to return from.

OUT OF DATA

A READ is attempted when no input exists or
pointer is at the end of input data.

NEXT W/O FOR

NEXT used and no FOR statement is used.

CONVERSION

Wrong type of data used as input, cannot be
converted.

OVERFLOW

Math calculation becomes too large for available
memory.

UNDERFLOW

Math calculation becomes too small (negative), the
exponent is to large.

Marathon Monitors Inc.

Page 124
MultiPro/Dualpro Programming Handbook

Index

BASIC, 36

BASIC Functions, 36
BASIC Statements, 36
Characters, 65
Interpreter, 65
Speed Hints, 71

BASIC Characters, 65
BASIC Interpreter, 65
Command Definition and Format, 45
Deleting A Step, 26
Displays and other Editing Notes, 26
Editing a Program, 26

Editing Program Steps, 27
Entering the Program Editor, 26
Inserting a Step, 27

Error Codes, 34
Error Table, 122
Exiting the Editor with Program Saved, 26
Exiting the Editor without Saving, 26
Explanation of Commands, Functions, Statements & Operators, 78
Limit Statements, 16
Logic Language Programmer, 38
Multipro Database, 30
Multipro Programming, 2
OPCODES, 39

Multipro and Dualpro, 39
Operator Selections, 12

Special Considerations, 13
Programmer Alarms, 17
Programming Analog Inputs, 28
Programming Analog Outputs, 29
Recipe Language Operations Codes, 8
Recipe Programming, 4
Sample Recipe Programs, 20
Summary of Commands, Functions, Statements & Operators, 72
Summary of OPCODEs, 41
Technical Information, 14
Version 4 Programmer, 31

